1,312 research outputs found
The Aharonov-Bohm Effect in the Fractional Quantum Hall Regime
We have investigated experimentally resonant tunnelling through
single-particle states formed around an antidot by a magnetic field, in the
fractional quantum Hall regime. For 1/3 filling factor around the antidot,
Aharonov-Bohm oscillations are observed with the same magnetic field period as
in the integer quantum Hall regime. All our measurements are consistent with
quasiparticles of fractional charge e*. However, the results are also
consistent with particles of any charge (>= e*) as the system must rearrange
every time the flux enclosed increases by h/e.Comment: Postscript, 4 pages, gzipped (350 kB
On the ratio of consecutive gaps between primes
In the present work we prove a common generalization of Maynard-Tao's recent
result about consecutive bounded gaps between primes and on the
Erd\H{o}s-Rankin bound about large gaps between consecutive primes. The work
answers in a strong form a 60 years old problem of Erd\"os, which asked whether
the ratio of two consecutive primegaps can be infinitely often arbitrarily
small, and arbitrarily large, respectively
Detection of Coulomb Charging around an Antidot
We have detected oscillations of the charge around a potential hill (antidot)
in a two-dimensional electron gas as a function of a perpendicular magnetic
field B. The field confines electrons around the antidot in closed orbits, the
areas of which are quantised through the Aharonov-Bohm effect. Increasing B
reduces each state's area, pushing electrons closer to the centre, until enough
charge builds up for an electron to tunnel out. This is a new form of the
Coulomb blockade seen in electrostatically confined dots. We have also studied
h/2e oscillations and found evidence for coupling of opposite spin states of
the lowest Landau level.Comment: 3 pages, 3 Postscript figures, submitted to the proceedings of
EP2DS-1
Probing e-e interactions in a periodic array of GaAs quantum wires
We present the results of non-linear tunnelling spectroscopy between an array
of independent quantum wires and an adjacent two-dimensional electron gas
(2DEG) in a double-quantum-well structure. The two layers are separately
contacted using a surface-gate scheme, and the wires are all very regular, with
dimensions chosen carefully so that there is minimal modulation of the 2DEG by
the gates defining the wires. We have mapped the dispersion spectrum of the 1D
wires down to the depletion of the last 1D subband by measuring the conductance
\emph{G} as a function of the in-plane magnetic field \emph{B}, the interlayer
bias and the wire gate voltage. There is a strong suppression of
tunnelling at zero bias, with temperature and dc-bias dependences consistent
with power laws, as expected for a Tomonaga-Luttinger Liquid caused by
electron-electron interactions in the wires. In addition, the current peaks fit
the free-electron model quite well, but with just one 1D subband there is extra
structure that may indicate interactions.Comment: 3 pages, 3 figures; formatting correcte
Geometric Suppression of Single-Particle Energy Spacings in Quantum Antidots
Quantum Antidot (AD) structures have remarkable properties in the integer
quantum Hall regime, exhibiting Coulomb-blockade charging and the Kondo effect
despite their open geometry. In some regimes a simple single-particle (SP)
model suffices to describe experimental observations while in others
interaction effects are clearly important, although exactly how and why
interactions emerge is unclear. We present a combination of experimental data
and the results of new calculations concerning SP orbital states which show how
the observed suppression of the energy spacing between states can be explained
through a full consideration of the AD potential, without requiring any effects
due to electron interactions such as the formation of compressible regions
composed of multiple states, which may occur at higher magnetic fields. A full
understanding of the regimes in which these effects occur is important for the
design of devices to coherently manipulate electrons in edge states using AD
resonances.Comment: 4 pages, 2 figure
One-Loop Renormalization of a Self-Interacting Scalar Field in Nonsimply Connected Spacetimes
Using the effective potential, we study the one-loop renormalization of a
massive self-interacting scalar field at finite temperature in flat manifolds
with one or more compactified spatial dimensions. We prove that, owing to the
compactification and finite temperature, the renormalized physical parameters
of the theory (mass and coupling constant) acquire thermal and topological
contributions. In the case of one compactified spatial dimension at finite
temperature, we find that the corrections to the mass are positive, but those
to the coupling constant are negative. We discuss the possibility of
triviality, i.e. that the renormalized coupling constant goes to zero at some
temperature or at some radius of the compactified spatial dimension.Comment: 16 pages, plain LATE
The cost of simplifying air travel when modeling disease spread
Background: Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. Methodology/Principal Findings: Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. Conclusions/Significance: If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed
Eccentricities of Planets in Binary Systems
The most puzzling property of the extrasolar planets discovered by recent
radial velocity surveys is their high orbital eccentricities, which are very
difficult to explain within our current theoretical paradigm for planet
formation. Current data reveal that at least 25% of these planets, including
some with particularly high eccentricities, are orbiting a component of a
binary star system. The presence of a distant companion can cause significant
secular perturbations in the orbit of a planet. At high relative inclinations,
large-amplitude, periodic eccentricity perturbations can occur. These are known
as "Kozai cycles" and their amplitude is purely dependent on the relative
orbital inclination. Assuming that every planet host star also has a (possibly
unseen, e.g., substellar) distant companion, with reasonable distributions of
orbital parameters and masses, we determine the resulting eccentricity
distribution of planets and compare it to observations? We find that
perturbations from a binary companion always appear to produce an excess of
planets with both very high (e>0.6) and very low (e<0.1) eccentricities. The
paucity of near-circular orbits in the observed sample implies that at least
one additional mechanism must be increasing eccentricities. On the other hand,
the overproduction of very high eccentricities observed in our models could be
combined with plausible circularization mechanisms (e.g., friction from
residual gas) to create more planets with intermediate eccentricities
(e=0.1-0.6).Comment: 8 pages, to appear in "Close Binaries in the 21st Century: New
Opportunities and Challenges", ed. A. Gimenez et al. (Springer
Cold Feedback in Cooling-Flow Galaxy Clusters
We put forward an alternative view to the Bondi-driven feedback between
heating and cooling of the intra-cluster medium (ICM) in cooling flow galaxies
and clusters. We adopt the popular view that the heating is due to an active
galactic nucleus (AGN), i.e. a central black hole accreting mass and launching
jets and/or winds. We propose that the feedback occurs with the entire cool
inner region (5-30 kpc). A moderate cooling flow does exist here, and
non-linear over-dense blobs of gas cool fast and are removed from the ICM
before experiencing the next major AGN heating event. Some of these blobs may
not accrete on the central black hole, but may form stars and cold molecular
clouds. We discuss the conditions under which the dense blobs may cool to low
temperatures and feed the black hole.Comment: 6 pages, no figures, to appear in the Proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching
(Germany
Coherent oscillations and incoherent tunnelling in one - dimensional asymmetric double - well potential
For a model 1d asymmetric double-well potential we calculated so-called
survival probability (i.e. the probability for a particle initially localised
in one well to remain there). We use a semiclassical (WKB) solution of
Schroedinger equation. It is shown that behaviour essentially depends on
transition probability, and on dimensionless parameter which is a ratio of
characteristic frequencies for low energy non-linear in-well oscillations and
inter wells tunnelling. For the potential describing a finite motion
(double-well) one has always a regular behaviour. For the small value of the
parameter there is well defined resonance pairs of levels and the survival
probability has coherent oscillations related to resonance splitting. However
for the large value of the parameter no oscillations at all for the survival
probability, and there is almost an exponential decay with the characteristic
time determined by Fermi golden rule. In this case one may not restrict oneself
to only resonance pair levels. The number of perturbed by tunnelling levels
grows proportionally to the value of this parameter (by other words instead of
isolated pairs there appear the resonance regions containing the sets of
strongly coupled levels). In the region of intermediate values of the parameter
one has a crossover between both limiting cases, namely the exponential decay
with subsequent long period recurrent behaviour.Comment: 19 pages, 7 figures, Revtex, revised version. Accepted to Phys. Rev.
- …