38 research outputs found

    Cannabis: An Overview of its Adverse Acute and Chronic Effects and its Implications

    Get PDF
    Data blocks and their p-values assessed using Bayesian posterior prediction in PuMA. (DOCX 17 kb

    Increased posterior cingulate functional connectivity following 6-month high-dose B-vitamin multivitamin supplementation : a randomized, double-blind, placebo-controlled trial

    Get PDF
    B vitamins are essential for optimal brain and body function, and are particularly important for cortical metabolic processes that have downstream effects on mitigating oxidative stress. Oxidative stress has been linked to poor psychological outcomes including psychological distress, which has wide-reaching implications for the community and the workplace. Given work-related stress has been associated with poor mental health outcomes, high-dose B vitamin supplementation may be effective in improving brain function and psychological outcomes via attenuation of oxidative stress. This randomized, double-blind, placebo-controlled study investigated psychological outcomes following 6-month supplementation of a high-B-vitamin multivitamin in a large sample of healthy adults (n = 108, aged 30–70 years), as well as changes in default mode network functional connectivity in a subset of the original sample (n = 28). Improvements in occupational stress, general health, perceived stress, depressive symptoms, and mood profiles were identified for both active and placebo groups over time (p < 0.05 corrected). Seed-based functional connectivity analysis centered on the posterior cingulate cortex (PCC) showed that connectivity between the PCC and the caudate increased for the active treatment group, but decreased for the placebo group (p < 0.05 corrected). These findings reveal a substantial intervention effect for both active and placebo treatments, which could in part be associated with a placebo effect in subjective measures. There was, however, a significant treatment effect in the objective measure of functional connectivity, suggesting that reduced psychological stress and high-B-vitamin multivitamin supplementation may lead to an increase in DMN and caudate functional connectivity, which might reflect a strengthening of neurocircuitry within areas associated with reward and emotion at rest. Future studies should consider a placebo run-in methodology to reduce the placebo effect on the subjective measures of stress

    Increased posterior cingulate functional connectivity following 6-month high-dose B-vitamin multivitamin supplementation : a randomized, double-blind, placebo-controlled trial

    Get PDF
    B vitamins are essential for optimal brain and body function, and are particularly important for cortical metabolic processes that have downstream effects on mitigating oxidative stress. Oxidative stress has been linked to poor psychological outcomes including psychological distress, which has wide-reaching implications for the community and the workplace. Given work-related stress has been associated with poor mental health outcomes, high-dose B vitamin supplementation may be effective in improving brain function and psychological outcomes via attenuation of oxidative stress. This randomized, double-blind, placebo-controlled study investigated psychological outcomes following 6-month supplementation of a high-B-vitamin multivitamin in a large sample of healthy adults (n = 108, aged 30–70 years), as well as changes in default mode network functional connectivity in a subset of the original sample (n = 28). Improvements in occupational stress, general health, perceived stress, depressive symptoms, and mood profiles were identified for both active and placebo groups over time (p < 0.05 corrected). Seed-based functional connectivity analysis centered on the posterior cingulate cortex (PCC) showed that connectivity between the PCC and the caudate increased for the active treatment group, but decreased for the placebo group (p < 0.05 corrected). These findings reveal a substantial intervention effect for both active and placebo treatments, which could in part be associated with a placebo effect in subjective measures. There was, however, a significant treatment effect in the objective measure of functional connectivity, suggesting that reduced psychological stress and high-B-vitamin multivitamin supplementation may lead to an increase in DMN and caudate functional connectivity, which might reflect a strengthening of neurocircuitry within areas associated with reward and emotion at rest. Future studies should consider a placebo run-in methodology to reduce the placebo effect on the subjective measures of stress

    Neurobiology of Social Processing deficits in Autism: NeuroSPA

    No full text
    Autism spectrum disorder (ASD) is a multi-dimensional, life-long condition characterised by social and communication difficulties, and restricted and repetitive behaviours. Despite its enduring nature, existing interventions primarily target children, leaving adolescents and adults without adequate support. Adolescence involves a critical period of brain development, which is associated with increased risk of mental health conditions (e.g., depression, psychosis). For young people with ASD, the combined effect of social difficulties and inadequate support further increases mental health risk. This study investigates the underlying neurobiology and genetic profiles of social dysfunction to inform therapeutic interventions and improve outcomes for young people with ASD. Participants will attend two testing sessions at Deakin University: 1) clinical and social processes assessment; 2) electroencephalography (EEG) A subset of 20 participants will be asked to participate a third testing session involving MRI at Swinburne Neuroimaging

    Factor analysis demonstrates a common schizoidal phenotype within autistic and schizotypal tendency: implications for neuroscientific studies

    No full text
    Behavioral and cognitive dysfunction, particularly social and communication impairments, are shared between autism and schizophrenia spectrum disorders, while evidence for a diametric autism-positive schizophrenia symptom profile is inconsistent. We investigated the shared phenotype at a personality trait level, particularly its resemblance to schizoid personality disorder, as well as differential aspects of the autism–schizophrenia model. Items of the autism spectrum quotient (AQ) and schizotypal personality questionnaire (SPQ) were pseudo-randomly combined, and were completed by 449 (162 male, 287 female) non-clinical participants aged 18–40. A factor analysis revealed three factors; the first represented a shared social disorganization phenotype, the second reflected perceptual oddities specific to schizotypy while the third reflected social rigidity specific to autism. The AQ and SPQ were strongly correlated with Factor 1 (AQ: r = 0.75, p < 0.001; SPQ: r = 0.96, p < 0.001), SPQ score was correlated with Factor 2 (r = 0.51, p < 0.001), particularly in cognitive–perceptual features (r = 0.66, p < 0.001), and AQ score was strongly correlated with Factor 3 (r = 0.76, p < 0.001). Furthermore, there was no relationship between Factor 1 and Factor 2. Thus, there is robust evidence for a shared social disorganization phenotype in autistic and schizotypal tendency, which reflects the schizoid phenotype. Discriminating and independent dimensions of schizotypal and autistic tendency exist in Factors 2 and 3, respectively. Current diagnostic protocols could result in different diagnoses depending on the instrument used, suggesting the need for neuromarkers that objectively differentiate autistic and schizotypal traits and resolve the question of commonality versus co-morbidity

    A comprehensive review of the ¹H-MRS metabolite spectrum in autism spectrum disorder

    Full text link
    Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy ((1)H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current (1)H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), &gamma;-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in (1)H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders

    A comprehensive review of the 1H-MRS metabolite spectrum in autism spectrum disorder

    Get PDF
    Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy (1H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current 1H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), &#0947;-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in 1H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders
    corecore