2,369 research outputs found

    The California Planet Survey IV: A Planet Orbiting the Giant Star HD 145934 and Updates to Seven Systems with Long-Period Planets

    Get PDF
    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1MJup1 M_{\rm Jup} planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2MJup2 M_{\rm Jup} planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period >5> 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.Comment: 16 pages, 13 figures. Accepted for publication in Ap

    Nickel Exposure Reduces Enterobactin Production in Escherichia Coli

    Get PDF
    Escherichia coli is a well- studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low- millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyo-verdine siderophore production in Pseudomonas aueroginosa. Understanding the mo-lecular cross- talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal- contaminated sites. Here, we show that high- nickel exposure prolongs lag phase duration as a result of low- intracellular iron levels in E. coli. Although E. coli cells respond to low- intracellular iron during nickel stress by maintaining high expres-sion of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation in E. coli by reducing the presence of enterobactin in the extracellular medium

    Five planets and an independent confirmation of HD 196885Ab from Lick Observatory

    Get PDF
    We present time series Doppler data from Lick Observatory that reveal the presence of long-period planetary companions orbiting nearby stars. The typical eccentricity of these massive planets are greater than the mean eccentricity of known exoplanets. HD30562b has Msini = 1.29 Mjup, with semi-major axis of 2.3 AU and eccentricity 0.76. The host star has a spectral type F8V and is metal rich. HD86264b has Msini = 7.0 Mjup, arel = 2.86 AU, an eccentricity, e = 0.7 and orbits a metal-rich, F7V star. HD87883b has Msini = 1.78 Mjup, arel = 3.6 AU, e = 0.53 and orbits a metal-rich K0V star. HD89307b has Msini = 1.78 Mjup, arel = 3.3 AU, e = 0.24 and orbits a G0V star with slightly subsolar metallicity. HD148427b has Msini = 0.96 Mjup, arel = 0.93 AU, eccentricity of 0.16 and orbits a metal rich K0 subgiant. We also present velocities for a planet orbiting the F8V metal-rich binary star, HD196885A. The planet has Msini = 2.58 Mjup, arel = 2.37 AU, and orbital eccentricity of 0.48, in agreement with the independent discovery by Correia et al. 2008.Comment: 12 figures, 8 tables, accepted Ap

    Two Exoplanets Discovered at Keck Observatory

    Get PDF
    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with Msini = 27.5 M_earth in a 14.48 d, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m/s. HD 73534 is a G5 subgiant with a Jupiter-like planet of Msini = 1.1 M_jup and K = 16 m/s in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m/s), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m/s).Comment: 8 figures, 6 tables, accepted, Ap

    A High Eccentricity Component in the Double Planet System Around HD 163607 and a Planet Around HD 164509

    Get PDF
    We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 ±\pm 0.02 days, a semi-amplitude of 51.1 ±\pm 1.4 \ms, an eccentricity of 0.73 ±\pm 0.02 and a derived minimum mass of \msini = 0.77 ±\pm 0.02 \mjup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 ±\pm 2.0^{\circ}; consequently, the planet's closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 ±\pm 0.02 years, an orbital eccentricity of 0.12 ±\pm 0.06 and a semi-amplitude of 40.4 ±\pm 1.3 \ms. The minimum mass is \msini = 2.29 ±\pm 0.16 \mjup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 ±\pm 3.8 days and an eccentricity of 0.26 ±\pm 0.14. The semi-amplitude of 14.2 ±\pm 2.7 \ms\ implies a minimum mass of 0.48 ±\pm 0.09 \mjup. The radial velocities of HD 164509 also exhibit a residual linear trend of -5.1 ±\pm 0.7 \ms\ per year, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to sub-millimag levels on their radial velocity periods. This provides strong support for planetary reflex motion as the cause of the radial velocity variations.Comment: 10 pages, 8 figures, accepted to Ap

    Nickel Exposure Reduces Enterobactin Production in \u3cem\u3eEscherichia coli\u3c/em\u3e

    Get PDF
    Escherichia coli is a well- studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low- millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyo-verdine siderophore production in Pseudomonas aueroginosa. Understanding the mo-lecular cross- talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal- contaminated sites. Here, we show that high- nickel exposure prolongs lag phase duration as a result of low- intracellular iron levels in E. coli. Although E. coli cells respond to low- intracellular iron during nickel stress by maintaining high expres-sion of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation in E. coli by reducing the presence of enterobactin in the extracellular medium. Escherichia coli is a well- studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low-millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyo- verdine siderophore production inPseudomonas aueroginosa. Understanding the mo- lecular cross-talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal-contaminated sites. Here, we show that high-nickel exposure prolongs lag phase duration as a result of low- intracellular iron levels in E. coli. Although E. coli cells respond to low- intracellular iron during nickel stress by maintaining high expres- sion of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation inE. coli by reducing the presence of enterobactin inthe extracellular mediu

    The N2K Consortium VI: Doppler Shifts Without Templates and Three New Short-Period Planets

    Get PDF
    We present a modification to the iodine cell Doppler technique that eliminates the need for an observed stellar template spectrum. For a given target star, we iterate toward a synthetic template spectrum beginning with an existing spectrum of a similar star. We then perturb the shape of this first-guess template to match the program observation of the target star taken through an iodine cell. The elimination of a separate template observation saves valuable telescope time, a feature that is ideally suited for the quick-look strategy employed by the ``Next 2000 Stars'' (N2K) planet search program. Tests using Keck/HIRES spectra indicate that synthetic templates yield a short-term precision of 3 m/s and a long-term, run-to-run precision of 5 m/s. We used this new Doppler technique to discover three new planets: a 1.5 Mjup planet in a 2.1375 d orbit around HD 86081; a 0.71 Mjup planet in circular, 26.73 d orbit around HD 224693; and a Saturn-mass planet in an 18.179 d orbit around HD 33283. The remarkably short period of HD 86081b bridges the gap between the extremely short-period planets detected in the OGLE survey and the 16 Doppler-detected hot jupiters (P < 15 d), which have an orbital period distribution that piles up at about three days. We have acquired photometric observations of two of the planetary host stars with the automated photometric telescopes at Fairborn Observatory. HD 86081 and HD 224693 both lack detectable brightness variability on their radial velocity periods, supporting planetary-reflex motion as the cause of the radial velocity variability. HD 86081 shows no evidence of planetary transits in spite of a 17.6% transit probability.Comment: 39 pages, 12 figures, 8 tables (ApJ Accepted

    Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems

    Get PDF
    The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.Comment: 138 pages, 8 Figures, 5 Tables. Accepted for publications in the Astrophysical Journa
    corecore