221 research outputs found

    Junior Recital: Byron Ford, clarinet/basset horn

    Get PDF

    Neuregulin 1-Beta cytoprotective role in AML 12 mouse hepatocytes exposed to pentachlorophenol.

    Get PDF
    Neuregulins are a family of growth factor domain proteins that are structurally related to the epidermal growth factor. Accumulating evidence has shown that neuregulins have cyto- and neuroprotective properties in various cell types. In particular, the neuregulin-1 Beta (NRG1-Beta) isoform is well documented for its antiinflammatory properties in rat brain after acute stroke episodes. Pentachlorophenol (PCP) is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Previous investigations from our laboratory have demonstrated that PCP exerts both cytotoxic and mitogenic effects in human liver carcinoma (HepG2) cells, primary catfish hepatocytes and AML 12 mouse hepatocytes. We have also shown that in HepG2 cells, PCP has the ability to induce stress genes that may play a role in the molecular events leading to toxicity and tumorigenesis. In the present study, we hypothesize that NRG1-Beta will exert its cytoprotective effects in PCP-treated AML 12 mouse hepatocytes by its ability to suppress the toxic effects of PCP. To test this hypothesis, we performed the MTT-cell respiration assay to assess cell viability, and Western-blot analysis to assess stress-related proteins as a consequence of PCP exposure. Data obtained from 48 h-viability studies demonstrated a biphasic response; showing a dose-dependent increase in cell viability within the range of 0 to 3.87 microg/mL, and a gradual decrease within the concentration range of 7.75 to 31.0 microg/mL in concomitant treatments of NRG1-Beta+PCP and PCP. Cell viability percentages indicated that NRG1-Beta+PCPtreated cells were not significantly impaired, while PCP-treated cells were appreciably affected; suggesting that NRG1-Beta has the ability to suppress the toxic effects of PCP. Western Blot analysis demonstrated the potential of PCP to induce oxidative stress and inflammatory response (c-fos), growth arrest and DNA damage (GADD153), proteotoxic effects (HSP70), cell cycle arrest as consequence of DNA damage (p53), mitogenic response (cyclin- D1), and apoptosis (caspase-3). NRG1-Beta exposure attenuated stress-related protein expression in PCP-treated AML 12 mouse hepatocytes. Here we provide clear evidence that NRG1-Beta exerts cytoprotective effects in AML 12 mouse hepatocytes exposed to PCP

    Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response.

    Get PDF
    BackgroundTraumatic brain injury (TBI) results in irreversible damage at the site of impact and initiates cellular and molecular processes that lead to secondary neural injury in the surrounding tissue. We used microarray analysis to determine which genes, pathways and networks were significantly altered using a rat model of TBI. Adult rats received a unilateral controlled cortical impact (CCI) and were sacrificed 24 h post-injury. The ipsilateral hemi-brain tissue at the site of the injury, the corresponding contralateral hemi-brain tissue, and naïve (control) brain tissue were used for microarray analysis. Ingenuity Pathway Analysis (IPA) software was used to identify molecular pathways and networks that were associated with the altered gene expression in brain tissues following TBI.ResultsInspection of the top fifteen biological functions in IPA associated with TBI in the ipsilateral tissues revealed that all had an inflammatory component. IPA analysis also indicated that inflammatory genes were altered on the contralateral side, but many of the genes were inversely expressed compared to the ipsilateral side. The contralateral gene expression pattern suggests a remote anti-inflammatory molecular response. We created a network of the inversely expressed common (i.e., same gene changed on both sides of the brain) inflammatory response (IR) genes and those IR genes included in pathways and networks identified by IPA that changed on only one side. We ranked the genes by the number of direct connections each had in the network, creating a gene interaction hierarchy (GIH). Two well characterized signaling pathways, toll-like receptor/NF-kappaB signaling and JAK/STAT signaling, were prominent in our GIH.ConclusionsBioinformatic analysis of microarray data following TBI identified key molecular pathways and networks associated with neural injury following TBI. The GIH created here provides a starting point for investigating therapeutic targets in a ranked order that is somewhat different than what has been presented previously. In addition to being a vehicle for identifying potential targets for post-TBI therapeutic strategies, our findings can also provide a context for evaluating the potential of therapeutic agents currently in development

    Neuregulin-1 attenuates experimental cerebral malaria (ECM) pathogenesis by regulating ErbB4/AKT/STAT3 signaling.

    Get PDF
    BACKGROUND:Human cerebral malaria (HCM) is a severe form of malaria characterized by sequestration of infected erythrocytes (IRBCs) in brain microvessels, increased levels of circulating free heme and pro-inflammatory cytokines and chemokines, brain swelling, vascular dysfunction, coma, and increased mortality. Neuregulin-1β (NRG-1) encoded by the gene NRG1, is a member of a family of polypeptide growth factors required for normal development of the nervous system and the heart. Utilizing an experimental cerebral malaria (ECM) model (Plasmodium berghei ANKA in C57BL/6), we reported that NRG-1 played a cytoprotective role in ECM and that circulating levels were inversely correlated with ECM severity. Intravenous infusion of NRG-1 reduced ECM mortality in mice by promoting a robust anti-inflammatory response coupled with reduction in accumulation of IRBCs in microvessels and reduced tissue damage. METHODS:In the current study, we examined how NRG-1 treatment attenuates pathogenesis and mortality associated with ECM. We examined whether NRG-1 protects against CXCL10- and heme-induced apoptosis using human brain microvascular endothelial (hCMEC/D3) cells and M059K neuroglial cells. hCMEC/D3 cells grown in a monolayer and a co-culture system with 30 μM heme and NRG-1 (100 ng/ml) were used to examine the role of NRG-1 on blood brain barrier (BBB) integrity. Using the in vivo ECM model, we examined whether the reduction of mortality was associated with the activation of ErbB4 and AKT and inactivation of STAT3 signaling pathways. For data analysis, unpaired t test or one-way ANOVA with Dunnett's or Bonferroni's post test was applied. RESULTS:We determined that NRG-1 protects against cell death/apoptosis of human brain microvascular endothelial cells and neroglial cells, the two major components of BBB. NRG-1 treatment improved heme-induced disruption of the in vitro BBB model consisting of hCMEC/D3 and human M059K cells. In the ECM murine model, NRG-1 treatment stimulated ErbB4 phosphorylation (pErbB4) followed by activation of AKT and inactivation of STAT3, which attenuated ECM mortality. CONCLUSIONS:Our results indicate a potential pathway by which NRG-1 treatment maintains BBB integrity in vitro, attenuates ECM-induced tissue injury, and reduces mortality. Furthermore, we postulate that augmenting NRG-1 during ECM therapy may be an effective adjunctive therapy to reduce CNS tissue injury and potentially increase the effectiveness of current anti-malaria therapy against human cerebral malaria (HCM)

    Neuregulin-1 attenuates mortality associated with experimental cerebral malaria.

    Get PDF
    BackgroundCerebral Malaria (CM) is a diffuse encephalopathy caused by Plasmodium falciparum infection. Despite availability of antimalarial drugs, CM-associated mortality remains high at approximately 30% and a subset of survivors develop neurological and cognitive disabilities. While antimalarials are effective at clearing Plasmodium parasites they do little to protect against CM pathophysiology and parasite-induced brain inflammation that leads to seizures, coma and long-term neurological sequelae in CM patients. Thus, there is urgent need to explore therapeutics that can reduce or prevent CM pathogenesis and associated brain inflammation to improve survival. Neuregulin-1 (NRG-1) is a neurotrophic growth factor shown to protect against brain injury associated with acute ischemic stroke (AIS) and neurotoxin exposure. However, this drug has not been tested against CM-associated brain injury. Since CM-associated brain injuries and AIS share similar pathophysiological features, we hypothesized that NRG-1 will reduce or prevent neuroinflammation and brain damage as well as improve survival in mice with late-stage experimental cerebral malaria (ECM).MethodsWe tested the effects of NRG-1 on ECM-associated brain inflammation and mortality in P. berghei ANKA (PbA)-infected mice and compared to artemether (ARM) treatment; an antimalarial currently used in various combination therapies against malaria.ResultsTreatment with ARM (25 mg/kg/day) effectively cleared parasites and reduced mortality in PbA-infected mice by 82%. Remarkably, NRG-1 therapy (1.25 ng/kg/day) significantly improved survival against ECM by 73% despite increase in parasite burden within NRG-1-treated mice. Additionally, NRG-1 therapy reduced systemic and brain pro-inflammatory factors TNFalpha, IL-6, IL-1alpha and CXCL10 and enhanced anti-inflammatory factors, IL-5 and IL-13 while decreasing leukocyte accumulation in brain microvessels.ConclusionsThis study suggests that NRG-1 attenuates ECM-associated brain inflammation and injuries and may represent a novel supportive therapy for the management of CM

    Pre-Construction Progress of Giant Steerable Science Mirror for TMT

    Get PDF
    The Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) team is developing the Giant Steerable Science Mirror (GSSM) for Thirty Meter Telescope (TMT) which will enter the preliminary design phase in 2016. The GSSM is the tertiary mirror of TMT and consists of the world’s largest flat telescope mirror (approximately 3.4m X 2.4 m X 100mm thick) having an elliptical perimeter positioned with an extremely smooth tracking and pointing mechanism in a gravity-varying environment. In order to prepare for developing this unique mirror system, CIOMP has been developing a 1/4 scale, functionally accurate version of the GSSM prototype during the pre-construction phase of GSSM. The prototype will incorporate the same optomechanical system and servo control system as the GSSM. The size of the prototype mirror is 898.5mm×634mm×12.5mm with an elliptical perimeter. The mirror will be supported axially by an 18 point whiffletree and laterally with a 12 point whiffletree. The main objective of the preconstruction phase includes requirement validation and risk reduction for GSSM and to increase confidence that the challenge of developing the GSSM can be met. The precision mechanism system and the optical mirror polishing and testing have made good progress. CIOMP has completed polishing the mirror, the prototype mechanism is nearly assembled, some testing has been performed, and additional testing is being planned and prepared. A dummy mirror is being integrated into the cell assembly prototype to verify the design, analysis and interface and will be used when testing the prototype positioner tilt and rotation motions. The prototype positioner tilt and rotator structures have been assembled and tested to measure each subsystem’s jitter and dynamic motion. The mirror prototype has been polished and tested to verify the polishing specification requirement and the mirror manufacturing process. The complete assembly, integration and verification of the prototype will be soon finished. Final testing will verify the prototype requirements including mounted mirror surface figure accuracy in 5 different orientations; rotation and tilt motion calibration and pointing precision; motion jitter; and internally generated vibrations. CIOMP has scheduled to complete the prototype by the end of July 2016. CIOMP will get the sufficient test results during the pre-construction phase to prepare to enter the preliminary design for GSSM
    • …
    corecore