75 research outputs found

    The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climate change is particularly pronounced in the High Arctic and a better understanding of the repercussions on ecological processes like herbivory, predation and pollination is needed. Arthropods play an important role in the high-arctic ecosystem and this role is determined by their density and activity. However, density and activity may be sensitive to separate components of climate. Earlier emergence due to advanced timing of snowmelt following climate change may expose adult arthropods to unchanged temperatures but higher levels of radiation. The capture rate of arthropods in passive open traps like pitfall trap integrates density and activity and, therefore, serves as a proxy of the magnitude of such arthropod-related ecological processes. We used arthropod pitfall trapping data and weather data from 10 seasons in high-arctic Greenland to identify climatic effects on the activity pattern of nine arthropod taxa.</p> <p>Results</p> <p>We were able to statistically separate the variation in capture rates into a non-linear component of capture date (density) and a linear component of weather (activity). The non-linear proxy of density always accounted for more of the variation than the linear component of weather. After accounting for the seasonal phenological development, the most important weather variable influencing the capture rate of flying arthropods was temperature, while surface-dwelling species were principally influenced by solar radiation.</p> <p>Conclusion</p> <p>Consistent with previous findings, air temperature best explained variation in the activity level of flying insects. An advancement of the phenology in this group due to earlier snowmelt will make individuals appear earlier in the season, but parallel temperature increases could mean that individuals are exposed to similar temperatures. Hence, the effect of climatic changes on the activity pattern in this group may be unchanged. In contrast, we found that solar radiation is a better proxy of activity levels than air temperature in surface-dwelling arthropods. An advancement of the phenology may expose surface-dwelling arthropods to higher levels of solar radiation, which suggest that their locomotory performance is enhanced and their contribution to ecological processes is increased.</p

    Long-term patterns in European brown hare population dynamics in Denmark: effects of agriculture, predation and climate

    Get PDF
    BACKGROUND: In Denmark and many other European countries, harvest records suggest a marked decline in European brown hare numbers, a decline often attributed to the agricultural practice. In the present study, we analyse the association between agricultural land-use, predator abundance and winter severity on the number of European brown hares harvested in Denmark in the years 1955 through 2000. RESULTS: Winter cereals had a significant negative association with European brown hare numbers. In contrast to this, root crop area was positively related to their numbers. Remaining crop categories were not significantly associated with the European brown hare numbers, though grass out of rotation tended to be positively related. The areas of root crop production and of grass out of rotation have been reduced by approximately 80% and 50%, respectively, while the area of winter cereals has increased markedly (>70%). However, European brown hare numbers were primarily negatively associated with the number of red fox. Finally, we also found a positive association between mild winters and European brown hare numbers. CONCLUSION: The decline of Danish European brown hare populations can mainly be attributed to predation by red fox, but the development in agricultural land-use during the last 45 years have also affected the European brown hare numbers negatively. Additionally, though mild winters were beneficial to European brown hares, the increasing frequency of mild winters during the study period was insufficient to reverse the negative population trend

    Predation and fragmentation portrayed in the statistical structure of prey time series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation.</p> <p>Results</p> <p>The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative.</p> <p>Conclusion</p> <p>We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence.</p

    Nesting synchrony and clutch size in migratory birds: Capital versus income breeding determines responses to variable spring onset

    Get PDF
    Synchronous reproduction of birds has often been explained by benefits from nesting together, but this concept fails to explain observed intraspecific variation and climate-mediated changes of breeding synchrony. Here, we present a theoretical model of birds that store resources for reproduction (capital breeders) to show how breeding synchrony, clutch size, and offspring recruitment respond to changes in timing of first possible breeding date. Our approach is based on individual fitness maximization when both prebreeding foraging and offspring development are time constrained. The model predicts less synchronous breeding, smaller clutch size, and higher chances for offspring recruitment in capital breeding birds that advance their nesting. For contrast, we also show that birds that need to acquire resources during egg laying (income breeders) do not change nesting synchrony but increase clutch size along with earlier breeding. The prediction of stronger nesting synchronization of capital breeders in years with late nesting onset is confirmed by empirical data on breeding synchrony of a high-latitude capital breeding sea duck, the common eider (Somateria mollissima). We predict that in warming high-latitude ecosystems, bird species that depend on stored reserves for reproduction are expected to desynchronize their nesting.publishedVersio

    NONLINEAR EFFECTS OF CLIMATE AND DENSITY IN THE DYNAMICS OF A FLUCTUATING POPULATION OF REINDEER

    Get PDF
    Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt . 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979– 1995) and low (1996–2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt . 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter. Key words: Arctic; attractors; climate; density dependence; mortality; nonlinear population dynamics; North Atlantic Oscillation (NAO); phase dependence; phase–space geometry; Rangifer tarandus platyrhynchus; reindeer; Svalbard

    Inter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variation

    Get PDF
    BACKGROUND: Major changes in climate have been observed in the Arctic and climate models predict further amplification of the enhanced greenhouse effect at high-latitudes leading to increased warming. We propose that warming in the Arctic may affect the annual growth conditions of the cold adapted Arctic charr and that such effects can already be detected retrospectrally using otolith data. RESULTS: Inter-annual growth of the circumpolar Arctic charr (Salvelinus alpinus, L.) was analysed in relation to climatic changes observed in the Arctic during the last two decades. Arctic charr were sampled from six locations at Qeqertarsuaq in West Greenland, where climate data have been recorded since 1990. Two fish populations met the criteria of homogeny and, consequently, only these were used in further analyses. The results demonstrate a complex coupling between annual growth rates and fluctuations in annual mean temperatures and precipitation. Significant changes in temporal patterns of growth were observed between cohorts of 1990 and 2004. CONCLUSION: Differences in pattern of growth appear to be a consequence of climatic changes over the last two decades and we thereby conclude that climatic affects short term and inter-annual growth as well as influencing long term shifts in age-specific growth patterns in population of Arctic charr
    corecore