7,055 research outputs found

    Minimax Current Density Coil Design

    Full text link
    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements with uniform current, cylindrical elements with sinusoidal current and conic section elements with sinusoidal-uniform current) were used with this approach to illustrate its generality.Comment: 24 pages, 6 figures, 2 tables. To appear in Journal of Physics D: Applied Physic

    The combinatorics of neurite self-avoidance

    Get PDF
    During neural development in Drosophila, the ability of neurite branches to recognize whether they are from the same or different neurons depends crucially on the molecule Dscam1. In particular, this recognition depends on the stochastic acquisition of a unique combination of Dscam1 isoforms out of a large set of possible isoforms. To properly interpret these findings, it is crucial to understand the combinatorics involved, which has previously been attempted only using stochastic simulations for some specific parameter combinations. Here we present closed-form solutions for the general case. These reveal the relationships among the key variables and how these constrain possible biological scenarios

    Comments on the continuing widespread and unnecessary use of a defective emission equation in field emission related literature

    Get PDF
    Field electron emission (FE) has relevance in many different technological contexts. However, many related technological papers use a physically defective elementary FE equation for local emission current density (LECD). This equation takes the tunneling barrier as exactly triangular, as in the original FE theory of 90 years ago. More than 60 years ago, it was shown that the so-called Schottky-Nordheim (SN) barrier, which includes an image-potential-energy term (that models exchange-and-correlation effects) is better physics. For a metal-like emitter with work-function 4.5 eV, the SN-barrier-related Murphy-Good FE equation predicts LECD values that are higher than the elementary equation values by a large factor, often between around 250 and around 500. By failing to mention/apply this 60-year-old established science, or to inform readers of the large errors associated with the elementary equation, many papers (aided by defective reviewing) spread a new kind of "pathological science", and create a modern research-integrity problem. The present paper aims to enhance author and reviewer awareness by summarizing relevant aspects of FE theory, by explicitly identifying the misjudgment in the original 1928 Fowler-Nordheim paper, by explicitly calculating the size of the resulting error, and by showing in detail why most FE theoreticians regard the 1950s modifications as better physics. Suggestions are made, about nomenclature and about citation practice, that may help to diminish misunderstandings.Comment: Submitted for publication; in v2 a correction to historical information (with no numerical consequences) has been made in Appendix

    Sinking particle fluxes from the euphotic zone over the continental slope of an eastern boundary current region

    Get PDF
    We analyze data from sediment traps and current meters moored at two locations 100 km apart over the Vancouver Island continental slope during the spring and summer of 1990. Time-series of sinking particle fluxes, major biogenic components (biogenic silica, calcium carbonate, and particulate organic carbon and nitrogen), and stable isotopic composition (δ13Corganic and δ15Ntotal) were determined on samples obtained with sequential sediment traps moored at 200–250 m depth. Associated water property data were obtained from CTD/Rosette profiles taken during trap service periods and from current meters positioned in the surface layer and near the sediment trap. These data indicate that the two locations (a southern site J and a northern site NJ) were hydrographically distinct during the investigation. At site J, we found evidence for frequent upwelling events and more variability in the upper layer water properties. The main difference in the sinking fluxes of particles between the two sites was the occurrence of a one-week event at the end of May at J that contributed about one third of the total particle flux during the sampling period. Otherwise, the total flux collected during the study and the flux of major biogenic particles were similar at both sites. Silica shells dominated the flux of particles, particularly during the spring and early summer period. At both sites, particulate organic carbon rather than calcium carbonate was the main contributor to particulate carbon fluxes. The δ13Corganic showed marked variations during the sampling period at both sites likely due to variations in the growth rate of phytoplankton and in species composition. In comparison, variations in nitrate availability appear to dominate the changes in δ15Ntotal

    Discovery of a Boxy Peanut Shaped Bulge in the Near Infrared

    Get PDF
    We report on the discovery of a boxy/peanut shaped bulge in the highly inclined barred Seyfert 2 galaxy NGC~7582. The peanut shape is clearly evident in near infrared JHKJHK images but obscured by extinction from dust in visible BVRBVR images. This suggests that near infrared imaging surveys will discover a larger number of boxy/peanut morphologies than visible surveys, particularly in galaxies with heavy extinction such as NGC~7582. The bulge in NGC~7582 exhibits strong boxiness compared to other boxy/peanut shaped bulges. If the starburst was mediated by the bar, then it is likely that the bar formed in less than a few bar rotation periods or a few ×108\times 10^8 years ago. If the bar also caused the peanut, then the peanut would have formed quickly; on a timescale of a few bar rotation periods.Comment: AAS Latex and Postcript Figures, accepted for publication in Ap

    The Nature of LINERs

    Get PDF
    We present JJ-band (1.151.35μ1.15-1.35 \mum) spectroscopy of a sample of nine galaxies showing some degree of LINER activity (classical LINERs, weak-[O {\sc i}] LINERs and transition objects), together with HH-band spectroscopy for some of them. A careful subtraction of the stellar continuum allows us to obtain reliable [Fe {\sc ii}]1.2567μ1.2567 \mum/Paβ\beta line ratios. We conclude that different types of LINERs (i.e., photoionized by a stellar continuum or by an AGN) cannot be easily distinguished based solely on the [Fe {\sc ii}]1.2567μ1.2567 \mum/Paβ\beta line ratio. The emission line properties of many LINERs can be explained in terms of an aging starburst. The optical line ratios of these LINERs are reproduced by a model with a metal-rich H {\sc ii} region component photoionized with a single stellar temperature T=38,000T_* = 38,000 K, plus a supernova remnant (SNR) component. The [Fe {\sc ii}] line is predominantly excited by shocks produced by SNRs in starbursts and starburst-dominated LINERs, while Paβ\beta tracks H {\sc ii} regions ionized by massive young stars. The contribution from SNRs to the overall emission line spectrum is constrained by the [Fe {\sc ii}]1.2567μ1.2567 \mum/Paβ\beta line ratio. Although our models for aging starbursts are constrained only by these infrared lines, they consistently explain the optical spectra of the galaxies also. The LINER-starburst connection is tested by predicting the time dependence of the ratio of the ionizing luminosity (LionL_{\rm ion}) to the supernova rate (SNr), LionL_{\rm ion}/(SNr). We predict the relative number of starbursts to starburst-dominated LINERs (aging starbursts) and show that it is in approximate agreement with survey findings for nearby galaxies.Comment: Accepted in ApJ (19 pages, 8 figures, uses emulateapj.sty

    Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive

    Get PDF
    Three weeks of summertime surface‐based chemical and meteorological observations at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive are used to study instantaneous photochemical production and loss rates of ozone by means of a numerical photochemical model. Results are most sensitive to the averaging scheme of data used to constrain the model and the ambient variability of the measurements. Model simulations driven by a time series of 5 min averaged data, most representative of the chemistry at the site, yield an average net photochemical ozone production of 3.6 ppbv/d. Estimates of net ozone production designed to filter out local sources, by using 1000–1400 LT median values of observations to drive the model and by excluding short‐lived hydrocarbons, give values ranging from 1 to 4 ppbv/d. These positive values of net ozone production within the marine boundary layer over Sable Island demonstrate the impact of polluted continental plumes on the background photochemistry of the region during the intensive. The dominant ambient variables controlling photochemical production and loss rates of ozone at the site during the measurement campaign appear to be levels of nitrogen oxides, ozone, nonmethane hydrocarbons, and solar intensity determined by cloud cover. The model partitioning of nitrogen oxides agrees for the most part with measurements, lending credence to calculated photochemical production and loss rates of ozone as well as inferred levels of peroxy radicals not measured at the site. Discrepancies, however, often occur during episodes of intermittent cloud cover, fog, and rain, suggesting the influence of cloud processes on air masses reaching the site

    Probing Spectral Line Gradients Beyond One Effective Radius in NGC 3610

    Full text link
    The outer region (0.75--1.25 r_e in the B-band) of the merger-remnant elliptical NGC 3610 is studied using extremely high signal to noise Keck spectra, with a supplementary spectrum of the galaxy center. Stellar population parameters -- age, [Z/H], [α\alpha/Fe] -- are measured in several apertures along the slit. Using the multi-index simultaneous fitting method of Proctor et al. (2004), no significant stellar population gradients are detected in the outer parts of the galaxy. The overall gradients relative to the galaxy center are consistent with those found in many other early-type galaxies, though the metallicity gradient is much steeper than would be expected if NGC 3610 formed in a major merger event. Standard analysis methods using the Hβ\beta index are found to produce spurious radially variable gradients.Comment: 15 pages, 9 figures, accepted by A

    Killer-cell immunoglobulin-like receptors and malaria caused by Plasmodium falciparum in The Gambia

    Get PDF
    The relevance of innate immune responses to Plasmodium falciparum infection, in particular the central role of natural killer (NK) cell-derived interferon gamma (IFN-γ), is becoming increasingly recognised. Recently, it has been shown that IFN-γ production in response to P. falciparum antigens is in part regulated by killer-cell immunoglobulin-like receptor (KIR) genes, and a study from malaria-exposed Melanesians suggested an association between KIR genotypes and susceptibility to infection. This prompted us to determine and compare the frequencies of 15 KIR genes in Gambian children presenting with either severe malaria (n = 133) or uncomplicated malaria (n = 188) and in cord-blood population control samples (n = 314) collected from the same area. While no significant differences were observed between severe and uncomplicated cases, proportions of individuals with KIR2DS2+C1 and KIR2DL2+C1 were significantly higher among malaria cases overall than in population control samples. In an exploratory analysis, activating KIR genes KIR2DS2, KIR3DS1 and KIR2DS5 were slightly higher in children in disease subgroups associated with the highest mortality. In addition, our data suggest that homozygosity for KIR genotype A might be associated with different malaria outcomes including protection from infection and higher blood parasitaemia levels in those that do get infected. These findings are consistent with a probable role of KIR genes in determining susceptibility to malaria, and further studies are warranted in different populations

    Spatially-resolved potential measurement with ion crystals

    Full text link
    We present a method to measure potentials over an extended region using one-dimensional ion crystals in a radio frequency (RF) ion trap. The equilibrium spacings of the ions within the crystal allow the determination of the external forces acting at each point. From this the overall potential, and also potentials due to specific trap features, are calculated. The method can be used to probe potentials near proximal objects in real time, and can be generalized to higher dimensions.Comment: 7 pages (double spaced), 3 figure
    corecore