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During neural development in Drosophila, the ability of neurite branches
to recognize whether they are from the same or different neurons depends
crucially on the molecule Dscam1. In particular, this recognition depends
on the stochastic acquisition of a unique combination of Dscam1 isoforms
out of a large set of possible isoforms. To properly interpret these find-
ings, it is crucial to understand the combinatorics involved, which has
previously been attempted only using stochastic simulations for some
specific parameter combinations. Here we present closed-form solutions
for the general case. These reveal the relationships among the key vari-
ables and how these constrain possible biological scenarios.

1 Introduction

The correct wiring of the nervous system during neural development re-
quires growing axons and dendrites (collectively termed neurites) to target
appropriate locations with exquisite sensitivity. In the past two decades,
it has become clear that this targeting is choreographed by a relatively
small number (order 102) of distinct molecular guidance cues (Dickson,
2002; Huber, Kolodkin, Ginty, & Cloutier, 2003; Chilton, 2006). However,
understanding how these cues actually operate to achieve correct wiring
remains an extremely active area of experimental research (Mortimer,
Fothergill, Pujic, Richards, & Goodhill, 2008; O’Donnell, Chance, & Bashaw,
2009). One crucial problem in the formation of appropriate wiring patterns
in many systems is neurite self-avoidance. This refers to the ability of neurite
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Figure 1: Schematic showing how Dscam1 is believed to facilitate neuronal
self-avoidance. (A) There are a large number (i ≈ 20,000) of possible Dscam1
isoforms. (B) Each neuron stochastically expresses a small subset of the isoforms
(m ≈ 30 isoforms). (C) When processes from the same neuron encounter one
another, the isoforms homophilically bind. This binding generates repulsion.
(D) However, when processes from different neurons encounter one another,
they are unlikely to be expressing the same isoforms, so homophilic binding
does not occur and the processes do not repel.

branches to recognize whether they are from the same or different neurons,
so that branches from the same neuron may avoid contacting each other.
It allows neurons to make a large number of connections to other neurons
over a wide area while avoiding wasting resources on recursive connec-
tions. Given the small number of guidance cues available relative to the
total number of neurons in even a small nervous system such as that of the
fly, how could each neuron be labeled with a separate molecular identity to
allow such self-avoidance?

Remarkably, recent work has identified a pivotal role for the Dscam
family of immunoglobulin cell surface proteins in this process (reviewed in
Hattori, Millard, Wojtowicz, & Zipursky, 2008). In particular in Drosophila,
alternative splicing of the single gene Dscam1 can generate 19,008 pro-
tein isoforms. Individually these exhibit isoform-specific binding, and ho-
mophilic recognition results in repulsion. Individual neurons express a
unique set of Dscam1 isoforms. When their neurites contact, they undergo
homophilic binding, which generates repulsion, whereas when other neu-
rons, which have a different set of isoforms, are encountered, homophilic
binding and repulsion do not occur (see Figure 1). The number of Dscam1
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isoforms expressed by each neuron is believed to be in the range 10 to
50, and it has been proposed that this set of isoforms is chosen stochasti-
cally from the set of all possible isoforms (Hattori et al., 2009). Although
little is known biologically about how this might occur, understanding the
consequences of this assumption reduces to a problem in combinatorics.

However, a simple calculation reveals a problem: even with a large num-
ber of isoforms to choose from, neurons randomly expressing Dscam1 iso-
forms are likely to encounter other neurons with at least one isoform in
common, potentially leading to inappropriate non-self-avoidance. This is
analogous to the counterintuitively large probability that two children in a
class at school share the same birthday. Hattori et al. (2009) therefore pro-
posed that some degree of “sharing” is allowed: neurites can share some
isoforms and not be repelled, provided the proportion of isoforms in com-
mon is small compared to the total number of isoforms expressed. The
lack of repulsion when some of the isoforms are shared may be because a
threshold amount of isoform binding is required to generate repulsion.

The combinatorial implications of this assumption are nontrivial to calcu-
late. Hattori et al. (2009) addressed this numerically by performing stochas-
tic simulations for some specific situations (an example is shown in Table 1)
but did not attempt the general case. Here we first analytically derive a
relatively simple approximate closed-form solution and explore the rela-
tionships this implies between the key variables involved. Second, we show
that this problem is analogous to a type of “collision” problem recently ad-
dressed in the literature of combinatorics, for which an exact solution has
been derived. Numerical evaluations of these formulas show that our ap-
proximate solution agrees very closely with the exact solution and that these
also agree closely with the stochastic simulations of Hattori et al. (2009). To-
gether these results deepen our understanding of neurite self-avoidance
and may be a useful guide for interpretating biological data in the future.
These calculations also provide a general approach for addressing similar
combinatorial problems in neural development.

2 Derivation of an Approximate Solution

We begin with a pairwise comparison of two neurons and determine the
probability that these neurons share exactly j isoforms. We use m as the
number of isoforms expressed per neuron and i as the total number of
possible isoforms (the terminology is summarized in Table 2). We assume
that the order in which the isoforms are selected does not matter.

First, consider the problem with the simplifying assumption that a neu-
ron expresses m distinct isoforms (the same isoform cannot be chosen more
than once per neuron). Now consider the case where the two neurons do not
share any isoforms. In this situation, let the first neuron choose m isoforms.
If the second neuron could choose isoforms without restriction, then the
number of ways it could choose m isoforms is ( i

m ). In order to have different
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Table 2: Notation Used Throughout.

n Number of neurons
N Number of neuron pairs
i Total number of isoforms
m Number of isoforms expressed per neuron

C( j) Probability that a pair of neurons shares exactly j isoforms
Q(k) Probability that a pair of neurons shares at least k isoforms

P Probability that all neurons in a population are distinct from each other
r Number of nondistinct isoforms on a single neuron

( p
q ) Choosing q from p without repeats

(( p
q )) Choosing q from p with repeats

Note: This notation is similar to Hattori et al. (2009).

isoforms from the first isoform, the second neuron must choose m isoforms
from i − m isoforms, that is, ( i−m

m ). Thus, the probability that two neurons
do not share any isoforms is

C(0) = ( i−m
m )

( i
m )

. (2.1)

Later we relax the assumption that all m isoforms chosen by each neurons
are distinct. In the case where one isoform is the same, there are m ways
to choose an isoform from the first neuron that will also be expressed on
the second neuron such that the two neurons have a single isoform in
common. The second neuron can choose only m − 1 isoforms, as the one in
common has already been chosen. In addition, as the isoform in common
has been chosen, there are now i − m + 1 isoforms from which to choose.
The probability of having one isoform in common is therefore

C(1) = m
( i−(m−1)

m−1 )

( i
m )

(2.2)

= m
( i−m+1

m−1 )

( i
m )

. (2.3)

The case of two isoforms in common is similar, except that there are now
( m

2 ) ways to choose these two isoforms, and the choice is m − 2 isoforms
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from i − m + 2 isoforms. Extending the argument to the case of exactly j
isoforms in common yields a probability of this occurring of

C( j) = ( m
j
) ( i−m+ j

m− j )

( i
m )

. (2.4)

Therefore, the probability that two neurons share fewer than k isoforms is

k−1∑
j=0

C( j) =
k−1∑
j=0

( m
j
) ( i−m+ j

m− j )

( i
m )

, (2.5)

and the probability, Q(k), of two neurons sharing at least k isoforms is

Q(k) = 1 −
k−1∑
j=0

( m
j
) ( i−m+ j

m− j )

( i
m )

. (2.6)

So far we have simplified our calculations by assuming that the same iso-
form is never expressed more than once for a given neuron. We can straight-
forwardly extend our result to deal with the situation in which we allow
one of the neurons in the pair to express the same isoform multiple times, as
would occur if the expression of each isoform was an independent random
event. The probability Q(k) that a pair of neurons shares k or more isoforms
out of m is then

Q(k) = 1 −
k−1∑
j=0

( m
j
) (( i−m+ j

m− j ))

(( i
m ))

(2.7)

= 1 −
k−1∑
j=0

( m
j
) ( i−1

m− j )

( i+m−1
m )

(2.8)

In expression 2.7, the sum is over the number of ways the isoforms in
common can be chosen (without repeats), times the number of ways the
isoforms not in common can be chosen, divided by the total number of
ways there are to choose these isoforms. Equation 2.8 simplifies the result
using the identity (( p

q )) = ( p+q−1
q ). As a simple numerical example, consider

a neuron that has m = 5 isoforms, choosing from a possible i = 40 isoforms.
The probability Q(k) of having k or more isoforms in common for this case
is given in Table 3.

We evaluated equation 2.8 for the same cases investigated by Hattori et al.
(2009) shown in Table 1. Our corresponding results are shown in Table 4,
and it can be seen that they match very closely with those in Table 1.
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Table 3: A Simple Example.

Number of isoforms in common (k) 1 2 3 4 5
Probability (Q(k)) 0.47 0.0912 0.007 0.00018 9.21e-07

Notes: This shows how the probability Q(k) that a pair of neurons has k or more isoforms in
common changes with increasing k calculated using equation 2.8. Each neuron expresses
m = 5 isoforms randomly selected from a set of i = 40 isoforms. It can be seen that Q(k)
drops very quickly with k.

The only significant differences occur when both tables give probabilities
of order < 10−9. This is expected, as Hattori et al. (2009) calculated their
numerical values using a Monte Carlo sampling with 109 iterations, which
means that the probabilities for events with probability P � 10−8 are not
expected to be sampled accurately.

2.1 Nondistinct Isoforms on the First Neuron. In the derivation above,
equation 2.8 takes into account the possibility that one neuron in the pair
may express the same isoform more than once. However, we retain the
simplifying assumption that the first neuron chose distinct isoforms. This
allows us to subtract the number of isoforms in common from the pool of
total isoforms in the second term of the numerator. Obviously each neuron
is equally likely to have a repeating isoform. How much does taking this
into account change the probabilities? The probability that all the isoforms
are distinct is given by the number of ways of choosing without repeats,
divided by the number of ways of choosing with repeats. Some numerical
examples are given in Table 5.

The probability that all the isoforms chosen by the first neuron are dis-
tinct approaches 1 as i � m. This means that it is highly probable that the
isoforms on the first neuron will be distinct, and thus equation 2.8 holds
as a good approximation. Furthermore, for low values of k, the approxi-
mation is accurate even when this assumption does not hold, because the
nondistinct isoforms do not affect the result significantly. The probability
of a single neuron expressing the same isoform r times (where r = 1 is the
case where the isoforms are all distinct) is given by

( i
m−(r−1) )

(( i
m−(r−1) ))

( m−(r−1)
r−1 )

( i+(r−2)
r−1 )

. (2.9)

The first expression in this equation is the number of ways the distinct
isoforms not in common can be chosen, that is, the number of ways they
can be chosen without repeats, divided by the number of ways they can be
chosen with repeats. The second term is the number of ways the isoforms
in common can be chosen so that they match one of the isoforms already
chosen, divided by the number of ways they could be chosen without
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Table 5: Probability That All Isoforms Expressed by a Neuron Are Distinct
(Equation 2.9) with m Isoforms Expressed per Neuron and i Possible Isoforms.

Number of Isoforms (i)

1000 1500 2000 2500 3000 3500 4000 4500 5000

m 10 0.914 0.942 0.956 0.965 0.97 0.975 0.978 0.98 0.982
15 0.811 0.869 0.9 0.919 0.932 0.942 0.949 0.954 0.959
20 0.684 0.776 0.827 0.859 0.881 0.897 0.909 0.919 0.927
25 0.549 0.67 0.741 0.787 0.819 0.842 0.861 0.875 0.887
30 0.419 0.56 0.647 0.706 0.748 0.78 0.805 0.824 0.84

Note: The probability that all isoforms are distinct approaches 1 as i → ∞.

Table 6: Probability That a Neuron Expresses the Same Isoform r Times When It
Expresses m = 30 Isoforms Randomly Selected from a Set of i = 5000 Isoforms.

Isoforms (r ) 1 2 3 4 5 6 7 8
in common

Probability 0.84 0.00493 2.6e-05 1.22e-07 5.03e-10 1.81e-12 5.54e-15 1.42e-17

Notes: The case r = 1 is the case where all expressed isoforms are unique. It can be seen
that this case is the most likely.

restrictions. The values generated by this equation get very small quite
quickly as r increases; the case where all the isoforms are distinct is the
most likely (see Table 6). Thus, for the parameter values of relevance to
Dscam1 expression, equation 2.8 is a very good approximation to the case
where the isoforms on the first neuron can be assumed to be nondistinct.
We examine the full solution without this assumption later.

3 Limits and Scale Laws

One advantage an analytic solution provides over a simulation is that it
is more amenable to analysis of how the solution scales with changes in
input parameters and what occurs as parameters are taken to their limits.
Here, we further simplify equation 2.8 and examine how the probability of
neurons being unique changes as the total number of isoforms i and the
number of isoforms per neuron m are modified.

The first simplification we make is to consider only the probability 1 −
Q(1) that a pair of neurons does not share any isoforms:

p = ( i−1
m )

( i+m−1
m )

(3.1)

=
m∏

n=1

i − n
i + n − 1

, (3.2)
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where we have used the identity that ( m
0 ) = 1. In this simplification we

cannot examine how p scales with the degree of sharing allowed.
Next, equation 3.2 can be approximated by examining log p, which gives

a sum rather than a product. By approximating this sum with an integral,
we find that

p ≈ (i − 1)(i−1)i (i+2)

(i − m)(i−m)(i + m − 1)(i+m+1)
. (3.3)

Testing this approximation numerically, it agrees with the full solution to
within 3% for m = 30 over the range of values of i considered in Table 7.
This approximation is also extremely fast to calculate. It may be useful if
probabilities for very large i , or a large number of probabilities, need to be
calculated.

We can use this approximation to examine the limits and scaling for p
with i and m. The limits for p as i is taken to extremes are as expected:

lim
i→0+

p = 0, (3.4)

lim
i→∞

p = 1. (3.5)

That is, if there are few isoforms from which to choose, neurons are likely to
share isoforms, while as the number of isoforms is increased, the probability
that a pair of neurons does not share any isoforms approaches 1. In addition,
we find that for large i , p asymptotically approaches 1:

p = 1 − O
(

1
i

)
as i → ∞. (3.6)

This means that the asymptotic approach to p = 1 slows as i increases.
The limits of p as m is taken to extremes is more complex because the

limit as m → 0 leaves a dependence on i . However, we find that

lim
m→∞ p = 0, (3.7)

lim
i→0+

[
lim

m→0+
p
]
= 0, (3.8)

lim
i→∞

[
lim

m→0+
p
]
= 1, (3.9)

lim
i→0+

[
lim

m→i−
p
]
= 0, (3.10)

lim
i→∞

[
lim

m→i−
p
]
= 0. (3.11)
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Thus, as expected, as neurons express fewer isoforms, they are less likely
to share isoforms, whereas the probability of sharing an isoform rises as
m → i . Furthermore, as m → i−, p goes to zero asymptotically much more
rapidly than p → 1 with increasing i ,

p = O
(
exp(−m)

)
as m → i−. (3.12)

Aside from demonstrating that these approximations behave correctly in
the limiting case and that scale laws can be derived, these results show
that the asymptotic behavior as i → ∞ is much slower than as m → i−.
This means that for large i and m, increasing m will drive p → 0 rapidly,
whereas maintaining the same value of p would require a much larger
increase in i . Therefore, if neurons could tolerate only little isoform sharing,
one would expect to find low values of m rather than extremely large i ,
because i would have to be unrealistically large in order to achieve the
same low values of p.

4 An Exact Solution Based on Collision Probabilities

A recent result from the combinatorics literature solves the Dscam1 iso-
form problem directly without requiring any approximations to be made
(Nakata, 2008). Consider the occupancy problem, where m1 black balls and
m2 white balls are thrown into i bins. Imagine that white balls represent
the isoforms from one neuron and black balls the isoforms expressed by
another neuron. Throwing the balls into i bins is analogous to choosing the
type of each isoform from i possible isoforms. A “collision” occurs if a bin
contains both white and black balls. This is analogous to an isoform being
shared between two neurons, where a black and a white ball that both land
in the same bin is the same as both neurons choosing the same isoform. In
this calculation, there are no restrictions that either neuron chooses distinct
isoforms, and this problem is thus exactly analogous to the Dscam1 isoform
problem. The probability that the two neurons have k isoforms in common
is the same as the probability that k bins have both white and black balls.
The general formula derived by Nakata (2008) describing this case is

C( j) = 1
im1+m2

m1∑
a= j

m2∑
b= j

{
m1

a

}{
m2

b

}
(a )m1 (b)m2 (i)a+b+ j

j !
. (4.1)

Here C( j) is the probability of exactly j collisions,
{m

a

}
is the Stirling num-

ber of the second kind (Graham, Knuth, & Patashnik, 1994), which gives
the number of ways of partitioning m objects into a nonempty subsets, and
(a ) j = ( a

j ) j ! = a !/(a − j)! Here m1 is the number of isoforms on the first neu-
ron, and m2 is the number of isoforms on the second neuron (our previous
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results have taken into account only the case where m1 = m2). Thus, the
probability Q(k) of k or more collisions is

Q(k) = 1 −
k−1∑
j=0

C( j). (4.2)

Probabilities Q(k) for the cases addressed in Tables 1 and 4 are tabulated
in Table 7 with this exact solution. It can be seen that the only significant
change from the approximate solution (see table 4 and equation 2.8) occurs
when there is a very low number of isoforms from which to choose.

This formula can be used to calculate Q(k) without the assumption of
equation 2.8 that one neuron chooses all distinct isoforms. However, the
proof of equation 4.2 is difficult to understand intuitively. Equation 2.8 is
accurate over biologically relevant parameter ranges and is amenable for
use in examining how the probabilities scale with parameter changes. It is
is also faster to evaluate numerically due to a reduced number of terms and
can be accurately calculated using lower-precision numbers.

However, care must still be taken when evaluating both equations 2.8 and
4.2 because ratios of large factorials have to be calculated and summed. An
arbitrary precision arithmetic library should be used to avoid intermediate
rounding errors caused by a lack of precision. These errors can seriously
affect the result as they accumulate in the summing process. We performed
all calculations and plots using an arbitrary precision Python library (Stein
et al., 2010). Our code is available on request. Calculations for a single
probability take seconds on a modern computer (Intel Core 2 Duo, 2.8 Ghz).

5 Population of Neurons

Having considered the probability of a neuron pair expressing distinct
isoforms, we now consider the probability that a set of n neurons all correctly
self-avoids. With n neurons, there are N = n(n−1)

2 possible neuron pairs.
What is the probability P that all pairs are distinct, that is, share fewer than
k isoforms? This is just the probability that each pair is distinct to the power
of the number of pairs: P = (1 − Q(k))N. Solving for n gives

n =
1 +

√
1 + 8 log P

log(1−Q(k))

2
. (5.1)

Therefore, given the number of isoforms allowed to be in common, the
number of total isoforms, and the isoforms per neuron, the maximum num-
ber of neurons that are distinct at a given probability Q(k) can be calculated.
Some examples are shown in Figure 2A for P = 95%.
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Figure 2: (A) The maximum number of distinct neurons n that can be created
while maintaining a 95% probability that all neuron pairs are distinct as a
function of the total number of isoforms i as calculated by equation 5.1. We
show the results when there are m = 30 isoforms per neuron and when varying
degrees of sharing are allowed before neurons are no longer considered distinct.
Both axes are log scale. In the wild type animal, i ≈ 20,000 (2e4). The Hattori
simulation line was plotted using values from Hattori et al. (2009) with 10%
sharing and m = 30. It is clear that these values are consistent with the values
generated by equation 5.1. (B) The number of distinct neurons that can be
created with a probability of 95% that all contacting neurons will have a distinct
identity when neurons contact with a likelihood u. This is calculated for several
values of i with m = 30 isoforms per neuron and 20% sharing allowed.

However, this gives only a lower bound for n, as it requires all the
possible neuron pairs to be distinct. Biologically this may not be a necessary
requirement because not all neurons will come into contact. To allow for
this, we introduce an extra term u, which is the probability that a pair of
neurons comes into contact. We then have

n =
1 +

√
1 + 8 log P

u log(1−Q(k))

2
. (5.2)

If u is small, it can have a significant affect on the number of distinct neurons
that can be created with a limited number of isoforms (see Figure 2B).

An important special case to consider is to assume that each neuron
encounters a fixed number c other neurons, regardless of the total number
of neurons. This occurs in many geometrical arrangements. In this case,
u = c/n, so we find that

P = (1 − Q)
c
2 (n−1)

, (5.3)

n = 2
c

log p
log(1 − Q)

+ 1. (5.4)
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Figure 3: The minimum percentage (A) and absolute number (B) of isoform
sharing that would need to be tolerated in order to maintain a 95% probability
that all mushroom body neurons are distinct. We show the degree of sharing re-
quired for the situation in which Hattori et al. (2009) found proper self-avoidance
(i = 4752 total isoforms) and for the situation in which they found improper
self-avoidance (i = 1152 total isoforms). Bumps and nonmonotonicity in the
graph are due to the number of isoforms that are shared, changing discretely as
m is increased.

Note that in this case, increasing n still requires decreasing Q, but is now of
order O (1/(1 − Q)) rather than O

(
1/

√
1 − Q

)
.

5.1 Mushroom Body Neurons. A specific case of biological interest
is mushroom body (MB) development in Drosophila. Most MB neurons
consist of two branches that split into two paths and form the two lobes
of the MB. Without Dscam1, only one lobe is formed (Hattori et al., 2009),
which suggests that Dscam1-mediated self-recognition and repulsion play
an important role in the segregation of the two branches. The MB consists
of 2500 neurons, yielding a requirement of Q(k) = 1.64 × 10−8 for correct
self-avoidance if a 95% probability of all pairs being unique is acceptable.
MB neurons have been estimated to express 10 to 30 isoforms each. By
examining mutants with reduced Dscam1 diversity, Hattori et al. (2009)
were able to show that expressing only 4752 isoforms rather than all possible
19,008 isoforms was sufficient for appropriate branching, but that reducing
this number further to 1152 isoforms was not sufficient.

Using these numbers, we investigated the degree of sharing that would
need to be tolerated in order to maintain proper self-avoidance for varying
values of m, the number of isoforms expressed by each neuron, and i the total
number of isoforms (see Figure 3A). We considered both the 4752 isoform
case where Hattori et al. (2009) found appropriate branching occurred, and
the 1152 isoform case where branching was impeded. These two situations
may provide a bound on the degree of isoform sharing before neurons
are no longer considered distinct. We found that even for 30 isoforms per
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Figure 4: The relationship between the number of isoforms expressed on each
neuron m1 and m2 and the probability that the pair of neurons has one or more
isoforms in common. Calculated with i = 5000 isoforms in total.

neuron, at least 25% sharing is required for proper self-avoidance when
i = 4725 isoforms.

5.2 Absolute Rather Than Relative Sharing. The above calculations
suggest that quite a high proportion of sharing must be allowed for proper
self-avoidance. One important consideration is that it may be that repul-
sion is triggered by an absolute number of homophilic isoform bindings,
independent of the total number of isoforms each neuron expresses. This is
explored in Figure 3B, which shows an approximately linear increase in the
absolute number of isoforms that must be shared as the number of isoforms
per neuron increases.

Furthermore, if an absolute number of isoforms needs to be shared to
trigger repulsion, then it would not matter how many isoforms each neuron
expresses as long as they shared over a certain number of isoforms. This
would imply that the number of isoforms per neuron is irrelevant when
determining if a set of isoforms is unique.

5.3 Variable Numbers of Isoforms on Each Neuron. So far we have
assumed, following Hattori et al. (2009), that the same number of isoforms
is expressed on each neuron. However, biologically this assumption is un-
likely to be the case. Does allowing this number to be chosen stochastically
from some distribution independently for each neuron change the basic
conclusions? To explore this, we used equation 4.2 to calculate how the
probability of having a number of isoforms in common changes with the
number of isoforms expressed by each neuron (see Figure 4). It can be seen
that the effect of a mismatch between the number of isoforms expressed
by one neuron versus another depends strongly on the absolute numbers
involved. We also calculated the probability distribution for the difference
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Figure 5: (A) The probability distribution of the difference in the number of
isoforms expressed between two neurons if each neuron expresses a number of
isoforms m chosen independently from a discrete uniform distribution with a
range [10, 30]. It is much more likely that a randomly chosen pair of neurons
differs in the number of isoforms they express than that they do not. (B) The
number of possible distinct neurons with a probability of 95% that the neurons
are unique when each neuron expresses exactly m = 30 isoforms (unadjusted,
triangles) and when the number of isoforms expressed by each neuron is chosen
stochastically (adjusted, circles). In these calculations, neurons are allowed to
share up to k = 4 isoforms while still being considered distinct. In the wild type
animal, i ≈ 20000 (2e4).

in number of isoforms between two neurons if each neuron expresses a
random number of isoforms chosen from a uniform distribution between
10 to 30 (see Figure 5A). Figure 5B shows how the number of neurons n
that can be created while maintaining correct repulsion can increase when
the number of isoforms per neuron is allowed to vary. This adjustment sim-
ply scales the earlier results and does not significantly change the overall
conclusions.

6 Discussion

Several recent experiments have dramatically increased our understanding
of the role played by Dscam1 in Drosophila neural development (reviewed
in Millard & Zipursky, 2008; Zipursky & Sanes, 2010). In particular, it is now
known that Dscam1 plays a key role in neuronal self-avoidance (Zhan et al.,
2004; Matthews et al., 2007) and that a large number of distinct isoforms
are necessary for normal development (Hattori et al., 2008; Chen et al.,
2006). Hattori et al. (2009) began a mathematical investigation of these
phenomena by using Monte Carlo simulations to estimate the probabilities
involved in Dscam1 self-recognition. We have expanded on their work by
demonstrating that it is possible to calculate a closed-form analytic solution
to this problem, as well as a much simpler but still accurate closed-form
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approximation. The advantage offered by these analytic solutions is that
they lend greater clarity to the underlying combinatorial issues and provide
a basis for analysis of how biologically relevant probabilities scale as key
parameters vary. Although the mathematics cannot answer experimental
questions, it can place constraints on the possible mechanisms involved in
Dscam1 mediated self-avoidance and help inform future experiments.

6.1 What Must Neuronal Self-Avoidance Achieve? Neuronal self-
avoidance is necessary to ensure that processes from the same neuron target
only processes from other neurons. For successful self-avoidance, neurons
must both correctly detect when they encounter processes from the same
neuron (avoiding false negatives) and when they encounter processes from
other neurons (avoiding false positives). The difficulty of this problem in-
creases as neuronal numbers and density are increased and as the tolerable
fraction of detection errors is decreased.

In addition, it is likely that some small amount of both false positives
and false negatives in self-avoidance does not result in measurable devel-
opmental defects. There are currently few results that provide insight into
the level of acceptable error that might exist, and the issue is compli-
cated by the likelihood of compensatory mechanisms, such as redundancy
in synapse formation and activity-driven synaptic refinement. Following
Hattori et al. (2009), we have allowed a 5% false-positive rate when con-
crete numbers were required. Our model does not explicitly include false
negatives, but we consider this in more detail in the next section.

We have used the parameter n to denote the number of neurons that
must self-avoid. However, interpreting this parameter as the total number
of neurons in the brain is obviously overly pessimistic. The geometry of
growing neuronal processes means that two randomly chosen neurons are
unlikely to encounter one another; we denoted the likelihood of encounter
by u. As described earlier, one possibility is that neurons encounter a fixed
number of other neurons, regardless of the total number of neurons. In this
case, we found that the difficulty of correct self-avoidance (and thus the
need for increasing the total number of isoforms i) increases only slowly as
more neurons are introduced. This reinforces the idea that the number of
isoforms required for correct self-avoidance is likely to be affected more dra-
matically by changes in neuronal density, growth patterns, and geometry
than by adding more neurons. This scaling may be important in allowing
evolutionary increases in brain size without requiring fundamental changes
in self-avoidance mechanisms.

6.2 Autapses and False Negatives. Throughout this work, we have
assumed that autapses, synapses between processes belonging to the same
neuron, are not beneficial. However, autapses do occur in vivo, and recent
work has demonstrated some functional uses for them (Bacci, Huguenard,
& Prince, 2003; Bekkers, 2003, 2009; Saada, Miller, Hurwitz, & Susswein,
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2009). Most of this work has been in mammalian brains, but it has been
shown that autapses play a functional role in Aplysia (Saada et al., 2009).
Therefore, it is plausible that in some Drosophila brain regions, a certain level
of autapse formation may be necessary for function. However, since Dscam1
knockouts display serious developmental defects and Dscam1 is known to
mediate self-avoidance, this demonstrates that an abundance of autapse
formation is harmful. Further, it demonstrates that synaptic refinement
of dysfunctional autapses during development is not enough; functioning
self-avoidance mechanisms are needed for normal development to occur.

Little is known about autapses in Drosophila; however, their potential
presence does not significantly affect our findings. From the point of view
of modeling self-avoidance, autapses represent a false negative, and our
model does not explicitly include false negatives. One way they could be
included would be to suppose that Dscam1 mediated self-avoidance is
stochastic, so that autapses occasionally form during self-encounters. This
could be represented as an additional interpretation of the parameter u
to include the probability that two processes expressing the same Dscam1
isoforms will repulse. Since most synapses that are formed are not autapses,
the change in u needed to model the development of autapses would be
small. As shown in Figure 2B, u acts as a scaling parameter, and small
changes in u do not significantly affect the combinatorial problems we have
considered.

6.3 What Defines the Uniqueness of a Neuron? An important out-
standing biological question in self-avoidance is: what determines the
uniqueness of a set of isoforms? If contact-dependent repulsion occurs only
when all the isoforms are identical, the important probability is that of hav-
ing exactly m isoforms in common between two neurons. This would allow
1027 to 1035 neurons with distinct identities (using 1152 to 4752 isoforms),
which is many more than are present in the brain of Drosophila. However, it
is unlikely that the mechanism that allows contact-dependent binding and
repulsion requires an identical match to every isoform. On the other hand,
if the presence of a single shared isoform is enough to promote avoidance,
then few unique neurons are likely to be produced, and a large number of
false positives will occur. Hence, there must be a threshold for the number
of shared isoforms, whether in total number or as a percentage of the total,
such that greater than this number of isoforms promotes avoidance.

The fact that neurons express multiple Dscam1 isoforms provides evi-
dence that some isoform sharing is acceptable before repulsion occurs: if a
single shared isoform is all that is required to generate repulsion, it would
be optimal for each neuron to express only a single isoform, which would
ensure self-avoidance while minimizing false positives. If some degree of
sharing is allowed, there is then a trade-off between expressing fewer iso-
forms per neuron, and thus increasing the probability that a pair of neurons
does not share any isoforms, versus allowing a greater degree of sharing,
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but increasing the number of isoforms that each neuron expresses. One
advantage that expressing multiple isoforms provides is that the redun-
dancy could ensure that self-avoidance is robust even if some isoforms
do not bind correctly. The trade-offs involved in Dscam1 isoform expres-
sion to minimize both metabolic cost and self-avoidance errors could be an
interesting avenue for future work.

One potential experimental avenue for testing hypotheses about how
Dscam1 isoforms determine the uniqueness of a neuron is through single
cell mutation. Here all the neurons are mutated to express the same Dscam1
isoform set, while a single cell expresses a different set. Single cell exper-
iments have previously been used to demonstrate that different isoform
complements repel (Matthews et al., 2007); it may be possible to use such
experiments to measure the degree of sharing allowed before repulsion
occurs. There is evidence that although Dscam1 isoforms are largely ho-
mophilic, some degree of heterophilic binding also occurs (Wojtowicz et al.,
2007). This heterophilic binding is often weaker and usually occurs only
with a handful of other isoforms. As such, the existence of such binding has
little effect on our results. It could be modeled by simply reducing the total
number of isoforms i by some amount, possibly even a fractional number
(to account for weak binding).

6.4 Deterministic Expression of Isoforms. Our calculations have been
based on the assumption that the expression of isoforms on a given neuron
is an entirely stochastic event. Another possibility is that neurons possess
information about which other neurons in the population they are more
likely to encounter during development. This information could be used to
ensure that neurons that are likely to encounter one another express differ-
ent isoforms to minimize self-avoidance false positives, while dramatically
lowering the number of distinct isoform identities required for correct self-
avoidance. This situation could be formalized as a random graph process
with the probability of a neuron encountering another neuron represented
by the probability of a vertex existing between the two neurons.

One possible biological implementation of this idea would be that neu-
rons near one another, and therefore maybe more likely to encounter one
another in the future, use intercellular signaling to ensure that nearby cells
express isoforms that are distinct. Another possibility is that immunologi-
cal mechanisms may eliminate cells that are nearby, but expressing similar
isoform sets, in order to minimize erroneous avoidance during later de-
velopment. While too little is known about the biological mechanisms of
Dscam1 isoform selection to constrain a random graph theory model of self-
avoidance, this approach may be useful for interpreting future findings.

6.5 Self-Avoidance in Vertebrates. Functioning self-avoidance mech-
anisms are essential for normal development in Drosophila, and it seems
likely that such a fundamental organizing principle could also be at work in
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developing vertebrate brains. Dscam in vertebrates has been shown to
undergo homophilic binding (Agarwala, Nakamura, Tsutsumi, & Ya-
makawa, 2000), and mice Dscam knockouts have neural defects (Fuerst,
Koizumi, Masland, & Burgess, 2008). However, in contrast to invertebrate
Dscam1, Dscam in vertebrates does not have a large number of splice vari-
ants, which are essential for correct self-avoidance (Yamakawa et al., 1998).
Therefore, Dscam1 is unlikely to act as a cell surface recognition molecule in
vertebrates (Hattori et al., 2008) and may play a role more similar to Dscam2
in Drosophila: establishing mosaic patterns that require only a small number
of isoforms.

However, another set of genes in vertebrates, the clustered protocad-
herins (Pcdh), seems to share some of the properties of Drosophila Dscam1
(Morishita & Yagi, 2007), which make them a promising candidate for self-
avoidance molecules. The Pcdh gene encodes three types of protein: Pcdh-α,
Pcdh-β, and Pcdh-γ , each containing 14, 22, and 22 isoforms, respectively.
Pcdh-α and -γ clusters have a constant cytoplasmic domain with a variable
ectodomain. Pcdh-β has both a variable cytoplasmic domain and a variable
ectodomain. The diversity in the Pchd isoforms is through separate promo-
tors that alter gene expression in each cell rather than due to splice variants
(Zipursky & Sanes, 2010). Each variable exon is expressed monoallelically,
with multiple variable exons expressed in each cell from both allels (Esumi
et al., 2005).

Recently Schreiner and Weiner (2010) showed that Pcdh-γ exhibits
isoform-specific homophilic binding. They tested 7 of the 22 Pcdh-γ
isoforms, and each isoform showed homophilic binding activity. This is sim-
ilar to the isoform-specific homophilic binding that Dscam1 exhibits. How-
ever, there are some important differences in Pcdh expression, indicating
that it may act differently from Dscam1 in cellular identification. Pchd has
much less diversity compared with Dscam1 (∼60 isoforms compared with
∼20,000 isoforms), and the number of distinct isoforms expressed per neu-
ron is significantly lower for Pchd; 3 to 6 isoforms per neuron for Pcdh
compared with 10 to 30 for Dscam1 (Zipursky & Sanes, 2010). Monoallelic
expression of Pcdh restricts the number of isoforms expressed per neuron
(Esumi et al., 2005). It has been proposed that each neuron expresses only
two Pcdh-α and two Pcdh-γ (Kaneko et al., 2006). This constraint on ex-
pression would further restrict the number of combinations of isoforms
available for self-avoidance. It would be possible to create a reasonable
number of distinct neurons under these conditions, but only if the presence
of a single different isoform could distinguish one set of isoforms from
another. This would produce approximately 102 neurons, which may be
sufficient depending on the geometry of neural development.

One possible model for increasing the diversity of Pchd interations is
the formation of tetramers. Previously it has been shown that Pcdh-γ forms
tetramers with other Pcdh-γ isoforms on the same neuron and it is highly
probable that these tetramers can also include Pcdh-α (Schreiner & Weiner,
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2010). It is possible that the composition of Pcdh tetramers determines the
specificity of the interactions with other neurons. If tetramer binding could
occur only between two rotationally identical tetramers, then this would
almost certainly provide the diversity needed for Pcdh to act as a cell-
recognition molecule. Almost 250,000 tetramers can be formed from Pcdh-γ
alone (i.e., 224), and almost 60,000 unique tetramers can be formed, taking
into account the rotation of the tetramer in the membrane. There are six
ways that four distinct isoforms could be arranged in a tetramer, which more
than doubles the number of distinct neurons that can be formed. Tetramer
formation within the cell and subsequent translocation to the cell surface
would be an ideal mechanism for providing each neuron with a unique
identity; otherwise, some deterministic mechanism would be needed to
ensure that the same tetramer forms at all locations on the cell surface.

It still remains unclear whether Pchd plays a role in neuronal pattern-
ing because currently no link exists between Pchd diversity and function.
However, since it shares several key properties with Dscam1—homophilic-
specific binding and a stochastic expression of multiple isoforms—it seems
a likely candidate for self-recognition during neurite development in
vertebrates.
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