147 research outputs found

    Transport through an impurity tunnel coupled to a Si/SiGe quantum dot

    Get PDF
    Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here we report the characterization of a quantum dot coupled to a localized electronic state, and we present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through this device enable the determination of the most likely location of the localized state, consistent with an electronically active impurity in the quantum well near the edge of the quantum dot. The experiments we report are consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.Comment: 5 pages, 3 figure

    The Vehicle, Fall 1997

    Get PDF
    Vol 39, No. 1 Table of Contents dancingDavid Moutraypage 1 UntitledMaria Nelsonpage 2 Braver Shades of FireEric Footepage 3 A CoverAmanda Davispage 4 Soup KitchenBlanca Delgadopage 5 Shades of TruthChad P. Elliotpage 5 UntitledNicole Guzaldopage 6 The FogJoe Howardpage 7 Horse-spitMichael Kawapage 8 A Red Coffee MugJoe Howardpage 9 Morning AfterRafael Gomezpage 10 Watching BoysKim Hunterpage 11 UntitledNatalie Macellaiopage 12 Synesthesia in Mood of JulyDoug Strahanpage 13 picasso heartRyan Reevespage 14 Spanish ClassBlanca Delgadopage 15 UntitledElizabeth Hollandpage 16 ApocalypseBlanca Delgadopage 17 CHRISTIANITY IN CALIFORNIAMichael H. Lakepage 18 To Love a MannequinSylvia L. Whippopage 19 UntitledGwen Griffinpage 20 cardboard wolverinesRyan Reevespage 21 NeilKelly Flohrpage 22-25https://thekeep.eiu.edu/vehicle/1068/thumbnail.jp

    Out of the Pacific and Back Again: Insights into the Matrilineal History of Pacific Killer Whale Ecotypes

    Get PDF
    Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses to partitioned mitochondrial genome sequences to better resolve the pattern of past radiations in this species. Our phylogenetic reconstructions indicate that in the North Pacific, sympatry between the maternal lineages that make up each ecotype arises from secondary contact. Both the phylogenetic reconstructions and a clinal decrease in diversity suggest a North Pacific to North Atlantic founding event, and the later return of killer whales to the North Pacific. Therefore, ecological divergence could have occurred during the allopatric phase through drift or selection and/or may have either commenced or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current was particularly vigorous

    Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations

    Get PDF
    Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 192 (2006): 449-459, doi:10.1007/s00359-005-0085-2.Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1-20 kHz band ranged from 131-168 dB re 1μPa @1m, with differences in the means of different sound classes (whistles: 140.2 ± 4.1 dB; variable calls: 146.6 ± 6.6 dB; stereotyped calls: 152.6 ± 5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with “long-range” stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10-16km in sea state zero) and “short-range” sounds (5-9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.Funding was provided by WHOI’s Ocean Ventures Fund and Rinehart Coastal Research Center and a Royal Society fellowship

    Search for Ultraheavy Dark Matter from Observations of Dwarf Spheroidal Galaxies with VERITAS

    Full text link
    Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV Mχ\lesssim M_{\chi} \lesssim 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UHDM; MχM_{\chi} \gtrsim 100 TeV) has been suggested as an under-explored alternative to the WIMP paradigm, we search for an indirect dark matter annihilation signal in a higher mass range (up to 30 PeV) with the VERITAS gamma-ray observatory. With 216 hours of observations of four dwarf spheroidal galaxies, we perform an unbinned likelihood analysis. We find no evidence of a γ\gamma-ray signal from UHDM annihilation above the background fluctuation for any individual dwarf galaxy nor for a joint-fit analysis, and consequently constrain the velocity-weighted annihilation cross section of UHDM for dark matter particle masses between 1 TeV and 30 PeV. We additionally set constraints on the allowed radius of a composite UHDM particle.Comment: 10 pages, 7 figure

    VERITAS and Fermi-LAT constraints on the Gamma-ray Emission from Superluminous Supernovae SN2015bn and SN2017egm

    Full text link
    Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ~10-100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar's spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV - 100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.Comment: 20 pages, 7 figures, 2 table

    A VERITAS/Breakthrough Listen Search for Optical Technosignatures

    Full text link
    The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for "technosignatures": artificial transmitters of extraterrestrial origin from beyond our solar system. The VERITAS Collaboration joined this program in 2018, and provides the capability to search for one particular technosignature: optical pulses of a few nanoseconds duration detectable over interstellar distances. We report here on the analysis and results of dedicated VERITAS observations of Breakthrough Listen targets conducted in 2019 and 2020 and of archival VERITAS data collected since 2012. Thirty hours of dedicated observations of 136 targets and 249 archival observations of 140 targets were analyzed and did not reveal any signals consistent with a technosignature. The results are used to place limits on the fraction of stars hosting transmitting civilizations. We also discuss the minimum-pulse sensitivity of our observations and present VERITAS observations of CALIOP: a space-based pulsed laser onboard the CALIPSO satellite. The detection of these pulses with VERITAS, using the analysis techniques developed for our technosignature search, allows a test of our analysis efficiency and serves as an important proof-of-principle.Comment: 15 pages, 7 figure
    corecore