5,395 research outputs found

    Pressure effects in the triangular layered cobaltites NaxCoO2

    Full text link
    We have measured transport properties as a function of temperature and pressure up to 30GPa in the NaxCoO2 system. For the x=0.5 sample the transition temperature at 53K increases with pressure, while paradoxically the sample passes from an insulating to a metallic ground state. A similar transition is observed in the x=0.31 sample under pressure. Compression on the x=0.75 sample transforms the sample from a metallic to an insulating state. We discuss our results in terms of interactions between band structure effects and Na+ order.Comment: 18 pages, 5 figure

    Interface relaxation in electrophoretic deposition of polymer chains: Effects of segmental dynamics, molecular weight, and field

    Get PDF
    Using different segmental dynamics and relaxation, characteristics of the interface growth is examined in an electrophoretic deposition of polymer chains on a three (2+1) dimensional discrete lattice with a Monte Carlo simulation. Incorporation of faster modes such as crankshaft and reptation movements along with the relatively slow kink-jump dynamics seems crucial in relaxing the interface width. As the continuously released polymer chains are driven (via segmental movements) and deposited, the interface width WW grows with the number of time steps tt, Wtβ,W \propto t^{\beta}, (β0.4\beta \sim 0.4--0.8)0.8), which is followed by its saturation to a steady-state value WsW_s. Stopping the release of additional chains after saturation while continuing the segmental movements relaxes the saturated width to an equilibrium value (WsWrW_s \to W_r). Scaling of the relaxed interface width WrW_r with the driving field EE, WrE1/2W_r \propto E^{-1/2} remains similar to that of the steady-state WsW_s width. In contrast to monotonic increase of the steady-state width WsW_s, the relaxed interface width WrW_r is found to decay (possibly as a stretched exponential) with the molecular weight.Comment: 5 pages, 7 figure

    Possible singlet to triplet pairing transition in NaxCoO2 H2O

    Full text link
    We present precise measurements of the upper critical field (Hc2) in the recently discovered cobalt oxide superconductor. We have found that the critical field has an unusual temperature dependence; namely, there is an abrupt change of the slope of Hc2(T) in a weak field regime. In order to explain this result we have derived and solved Gor'kov equations on a triangular lattice. Our experimental results may be interpreted in terms of the field-induced transition from singlet to triplet superconductivity.Comment: 6 pages, 5 figures, revte

    System identification of gene regulatory networks for perturbation mitigation via feedback control

    Get PDF
    In Synthetic Biology, the idea of using feedback control for the mitigation of perturbations to gene regulatory networks due to disease and environmental disturbances is gaining popularity. To facilitate the design of such synthetic control circuits, a suitable model that captures the relevant dynamics of the gene regulatory network is essential. Traditionally, Michaelis-Menten models with Hill-type nonlinearities have often been used to model gene regulatory networks. Here, we show that such models are not suitable for the purposes of controller design, and propose an alternative formalism. Using tools from system identification, we show how to build so-called S-System models that capture the key dynamics of the gene regulatory network and are suitable for controller design. Using the identified S-System model, we design a genetic feedback controller for an example gene regulatory network with the objective of rejecting an external perturbation. Using a sine sweeping method, we show how the S-System model can be approximated by a second order linear transfer function and, based on this transfer function, we design our controller. Simulation results using the full nonlinear S-System model of the network show that the designed controller is able to mitigate the effect of external perturbations. Our findings highlight the usefulness of the S-System modelling formalism for the design of synthetic control circuits for gene regulatory networks

    Electro-Deposition of Polymer Chains on an Adsorbing Wall: Density Profiles and Wall Coverage

    Get PDF
    Growth of polymer density in an electro-deposition model of polymer chains on an impenetrable wall is studied on a two dimensional discrete lattice using a Monte Carlo simulation. Polymer-polymer repulsion and polymer-wall attraction for the adsorbing wall (along with the neutral and repulsive interactions) are considered in an external field. Effects of the field strength (B), temperature (T), and chain length (L-c) on the density profile of the polymer chains and wall coverage are investigated. The spatial density profile shows onset of oscillation near the wall at a characteristic field (B-c) which depends on chain length and temperature, In low field, adsorption-co-desorption transition at the wall appear on increasing the temperature (unlike neutral and repulsive walls). In high field regime, on the other hand, a non-monotonic dependence of coverage on temperature is observed with a maximum at a temperature (T-m) which increases on increasing B. The equilibrium value of the polymer density (P-d) shows a power-law decay with the chain length, p(d) similar to L-c(-alpha), at the wall and in the bulk with corresponding values of the exponent alpha(w) and alpha(B); these exponents differ substantially and depend on B, T, and L-c. The coverage decays monotonically with the chain length at a constant temperature and field. (C) 1997 American Institute of Physics. [S0021-9606(97)51347-X]
    corecore