16 research outputs found

    Effect of heating duration on the synthesis of silicon carbide nanotubes by microwave heating of MWCNTs and silica

    Get PDF
    In this article, the effect of heating duration on the synthesis of silicon carbide nanotubes (SiCNTs) was reported. SiCNTs were synthesized from blend of silicon dioxide (SiO2) and multi-walled carbon nanotubes (MWCNTs) in the ratio of 1:3 by using the microwave heating at 1400°C and maintained at duration of 20, 40 and 60 min, respectively. SiCNTs synthesized at heating duration of 40 and 60 min showed the presence of single phase β-SiC in X-ray diffraction patterns. Meanwhile, field emission scanning electron microscope images showed that SiCNTs were formed and no residual of SiO2 and MWCNTs was observed for SiCNTs formed at heating duration of 40 and 60 min. Transmission electron microscopy images showed the SiCNTs have inter-planar spacing of 0.263 nm and tubular structure of nanotube were retained. The peak corresponded to β-SiC was observed at wavelength of 465 nm from the photoluminescence spectroscopy and associated with energy band gap of 2.67 eV. Absorption bands of Si-C bond were detected at 806.23 cm-1 from the Fourier transform infrared spectra. High purity SiCNTs was obtained at 40 and 60 min as indicated by low weight loss by thermo-gravimetric analysis. 40 min is the most suitable heating duration for the synthesis of single phase β-SiCNTs

    Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019.

    Get PDF
    BackgroundMalnutrition and obesity are interdependent pathologies along the same spectrum. We examined global trends and projections of disability-adjusted life years (DALYs) and deaths from malnutrition and obesity until 2030.MethodsUsing data from the 2019 Global Burden of Disease study involving 204 countries and territories, trends in DALYs and deaths were described for obesity and malnutrition from 2000 to 2019, stratified by geographical regions (as defined by WHO) and Socio-Demographic Index (SDI). Malnutrition was defined according to the 10th revision of International Classification of Diseases codes for nutritional deficiencies, stratified by malnutrition type. Obesity was measured via body mass index (BMI) using metrics related to national and subnational estimates, defined as BMI ≥25 kg/m2. Countries were stratified into low, low-middle, middle, high-middle, and high SDI bands. Regression models were constructed to predict DALYs and mortality up to 2030. Association between age-standardised prevalence of the diseases and mortality was also assessed.FindingsIn 2019, age-standardised malnutrition-related DALYs was 680 (95% UI: 507-895) per 100,000 population. DALY rates decreased from 2000 to 2019 (-2.86% annually), projected to fall 8.4% from 2020 to 2030. Africa and low SDI countries observed highest malnutrition-related DALYs. Age-standardised obesity-related DALY estimates were 1933 (95% UI: 1277-2640). Obesity-related DALYs rose 0.48% annually from 2000 to 2019, predicted to increase by 39.8% from 2020 to 2030. Highest obesity-related DALYs were in Eastern Mediterranean and middle SDI countries.InterpretationThe ever-increasing obesity burden, on the backdrop of curbing the malnutrition burden, is predicted to rise further.FundingNone

    Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors

    No full text
    Detection of genetic mutations leading to hematological malignancies is a key factor in the early diagnosis of acute myeloid leukemia (AML). FLT3-ITD mutations are an alarming gene defect found commonly in AML patients associated with high cases of leukemia and low survival rates. Available diagnostic assessments for FLT3-ITD are incapable of combining cost-effective detection platforms with high analytical performances. To circumvent this, we developed an efficient DNA biosensor for the recognition of AML caused by FLT3-ITD mutation utilizing electrochemical impedance characterization. The system was designed by adhering gold-sputtered zinc oxide (ZnO) nanorods onto interdigitated electrode (IDE) sensor chips. The sensing surface was biointerfaced with capture probes designed to hybridize with unmutated FLT3 sequences instead of the mutated FLT3-ITD gene, establishing a reverse manner of target detection. The developed biosensor demonstrated specific detection of mutated FLT3 genes, with high levels of sensitivity in response to analyte concentrations as low as 1 nM. The sensor also exhibited a stable functional life span of more than five weeks with good reproducibility and high discriminatory properties against FLT3 gene targets. Hence, the developed sensor is a promising tool for rapid and low-cost diagnostic applications relevant to the clinical prognosis of AML stemming from FLT3-ITD mutations

    Application of Gold Nanoparticles for Electrochemical DNA Biosensor

    No full text
    An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyl)triethoxysilane (APTES) as a linker molecule combined with the gold nanoparticles (GNPs) on thermally oxidized SiO2 thin films. The SiO2 thin films surface was chemically modified with a mixture of APTES and GNPs for DNA detection in different time periods of 30 min, 1 hour, 2 hours, and 4 hours, respectively. The DNA immobilization and hybridization were conducted by measuring the differences of the capacitance value within the frequency range of 1 Hz to 1 MHz. The capacitance values for DNA immobilization were 160 μF, 77.8 μF, 70 μF, and 64.6 μF, respectively, with the period of time from 30 min to 4 hours. Meanwhile the capacitance values for DNA hybridization were 44 μF, 54 μF, 55 μF, and 61.5 μF, respectively. The capacitance value of bare SiO2 thin film was 0.42 μF, which was set as a base line for a reference in DNA detection. The differences of the capacitance value between the DNA immobilization and hybridization revealed that the modified SiO2 thin films using APTES and GNPs were successfully developed for DNA detection

    Evaluation of the Effect of Silica Fume on Amorphous Fly Ash Geopolymers Exposed to Elevated Temperature

    No full text
    The properties of amorphous geopolymer with silica fume addition after heat treatment was rarely reported in the geopolymer field. Geopolymer was prepared by mixing fly ash and alkali activator. The silica fume was added in 2% and 4% by weight. The geopolymer samples were cured at room temperature for 28 days before exposed to an elevated temperature up to 1000 °C. The incorporation of 2% silica fume did not cause significant improvement in the compressive strength of unexposed geopolymer. Higher silica fume content of 4% reduced the compressive strength of the unexposed geopolymer. When subjected to elevated temperature, geopolymer with 2% silica fume retained higher compressive strength at 1000 °C. The addition of silica fume in fly ash geopolymer caused a lower degree of shrinkage and expansion, as compared to geopolymer without the addition of silica fume. Crystalline phases of albite and magnetite were formed in the geopolymer at 1000 °C

    Psychometric properties of the Malay version of the diabetes empowerment scale among Hospital Serdang type 2 diabetes mellitus patients using exploratory factor analysis

    No full text
    Background: This study was initiated to examine the psychometric components of the Diabetes Empowerment Scale (DES) by translating and validating the scale into the Malay language (DES-M) which is the main language spoken in Malaysia. This study can determine the level of empowerment among diabetic patients towards diabetes management. In addition, the reliability and validity of the DES-M was also demonstrated. Methods: A total of 151 patients with type 2 diabetes mellitus were recruited (between June 2016 and October 2016) to complete sets of questionnaires, which were DES-M, the Malay versions of the Diabetes Quality of Life (DQOL) for Adults and Summary of Diabetes Self Care Activities Questionnaire (SDSCA). Confirmatory and Exploratory factor analysis (CFA and EFA) were carried out to determine the factor structures of the DES-M. Results: There were 100 males and 51 females with ages ranging from 19 to 81 years old (55 ± 13) included in this study. The instrument displayed good internal consistency (Cronbach’s α =0.920) and the respective coefficients ranged from 0.65–0.84. Discriminant validity showed adequate correlations ranged from 0.257–0.744. Concurrent validity with SDSCA (Pearson’s correlation = 0.313, p = 0.012). Predictive validity with DQOL (B = 0.27, p = 0.016). CFA indicated that four factor model of the DES-M has good fit to the data. Conclusion: This study indicates that the DES-M has a good internal consistency and validity. Therefore, it is a valid and reliable instrument for assessing empowerment score among patients with diabetes in Malaysia

    Effective Synthesis of Silicon Carbide Nanotubes by Microwave Heating of Blended Silicon Dioxide and Multi-Walled Carbon Nanotube

    No full text
    <div><p>Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO2 and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO2 and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO2 in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO2 and MWCNTs to SiCNTs was achieved for blend of SiO2 and MWCNTs in molar ratio of 1:3.</p></div
    corecore