680 research outputs found

    Infrared spectra of crystalline and glassy silicates and application to interstellar dust

    Get PDF
    The infrared spectra of crystalline minerals predicted in theoretical condensation sequences do not match the astronomical observations. Since the astronomical spectra are a closer match to glassy silicates, the authors undertook a study to measure the infrared spectra of glassy silicates that have compositions similar to silicate minerals predicted in theoretical condensation sequences. The data should support observations aimed at elucidating condensation chemistry in dust forming regions. The authors measured the mass absorption coefficients, from 2.5 to 25 microns, of ground samples of olivine, diopside, and serpentine and also smoke samples that were prepared from these minerals. The smoke samples prepared in this way are predominantly glassy with nearly the same composition as the parent minerals. The crystalline samples consisted of pure olivine ((Fe(0.1)Mg(0.9))(2)SiO(4)), serpentine, diopside. Sample purity was confirmed by x ray diffraction. Each mineral was ground for 10 hours and a measured mass of the powder was mixed with KBr powder for absorption measurements using the method of Borghesi et a. (1985). The smoke samples were prepared from the same samples used for grinding by vaporizing the minerals using pulsed laser radiation in air. The smoke samples formed by condensation of the resulting vapor. The smoke settled onto infrared transparent KRS-5 substrates and onto a quartz crystal microbalance used to obtain mass measurements. A description of the preparation method is given in Stephens (1980). The glassy diopside showed only diffuse electron diffraction peaks and hence was nearly amorphous, while the serpentine smoke showed a weak diffraction pattern corresponding to MgO. The smoke from olivine showed a weak diffraction pattern corresponding to Fe2O3 and/or Fe3O4. The mass absorption coefficients, from 2.5 to 25 microns, of crystalline diopside, olivine, and serpentine and their corresponding smoke samples are shown in figures

    IR emission from circumstellar envelopes of C-rich stars

    Get PDF
    The reliability of a theoretical model that solves the radiative transfer equation in dust clouds surrounding a central star is checked. In particular, it is found that both classical scattering by dust and the back-heating effects are negligible in the radiative transfer when envelopes similar to IRC+10216 are taken into consideration. In addition, new fits of IRC+10216 spectra are presented which were obtained, when the source is in different luminosity phases, under the assumption that amorphous carbon grains are in the circumstellar envelope. The same model is currently used to simulate the emission from carbon-rich sources showing the silicon carbide feature at 11.3 microns

    Experimental evidence for amorphous carbon grains in comets

    Get PDF
    Amorphous carbon grains similar to those produced in the laboratory, but with a higher hydrogen content, appear to be good candidates to simulate both the IR continuum emission and the 3.4 micron band measured for P/Halley. The comparison of the cometary features with those detected in the laboratory for carbon grains characterized by various sp(exp 2)/sp(exp 3) ratios seems to indicate that a prevalent diamond-like (sp(exp 3)) structure should be present in cometary particles. These kinds of solid particles seem also suitable to explain the daily and monthly variations of the 3.4 micron band intensity, relative to the continuum, and, at the same time,- to fulfill the abundance constraints. The same grains appear to be able to reproduce the absorption bands detected in the IR galactic source IRS 7. This result may be considered as a first experimental evidence of a relation existing between interstellar dust and cometary materials

    Raman properties of various carbonaceous materials and their astrophysical implications

    Get PDF
    It is well known that a large number of celestial objects exhibit, in the range 3 to 12 micron, a family of emission features called unidentified infrared bands (UIR). They usually appear together and are associated with UV sources. Recently various authors have suggested that these features could be attributed to solid carbonaceous materials. Following this interest, a systematic analysis was performed of various types of amorphous carbon grains and polycyclic aromatic hydrocarbons (PAH), produced in lab. Updating results of Raman measurements performed on several carbonaceous materials, chosen according to their astrophysical interest, are presented. The measurements were made by means of a Jobin-Yvon monochromator HG2S and standard DC electronic. The line at 5145 A of an Ar+ laser was used as excitation source

    The infrared emission of carbonaceous particles around C-rich IRAS sources

    Get PDF
    The IRAS spectra of 23 carbon-rich sources have been fitted by means of an improved theoretical model based on the Leung-Spagna radiative transfer code and using extinction data obtained in our laboratory for different types of amorphous carbon and silicon carbide submicron particles. The agreement between observations and theoretical spectra is rather good. However, a comparison between the IRAS spectrum of the object 1244710425 (RU Vir) and that recently obtained at UKIRT, for the same object but with higher resolution, seems to open new problems

    Malfunction and Bad Behavior Diagnosis on Domestic Environment

    Get PDF
    Abstract Greenhouse gas emissions from homes arise primarily from fossil fuels burned for heat, the use of products that contain greenhouse gases, and the handling of waste. Human activities are responsible for almost all of the increase in greenhouse gases in the atmosphere over the last 150 years. The household sector is one of the biggest aggregate consumers and this is the reason why increasingly policies have been considering it. One of the key factors in curbing energy consumption in this sector is widely recognized to be due to erroneous behaviors and systems malfunctioning, mainly explained by the lack of awareness of the final user; so, training the final user to energy awareness can be more effective and cheaper than other policies. In this context, energy management in homes is playing, and will play even more in future, a key role in increasing the final consumer awareness towards its own energy consumption and consequently in bursting its active role in smart grids. The aim of this paper is to highlight the economic benefits of low cost intelligent control domestic devices, to identify energy behavior, system status and improve energy efficiency. The scope is to develop interaction between final users to create a network of energy consumption efficiency. The paper presents an application of Multi-scale Principal Component Analysis to diagnose inefficient occupant behavior and systems malfunctioning and suggest good practices of energy conservation

    Spectral Evidence of Aqueous Activity in Two Putative Martian Paleolakes

    Get PDF
    CRISM observations of putative paleolakes in Cankuzo and Luqa craters exhibit spectral features consistent with the activity of water. The spatial distributions suggest different formation scenarios for each site. In Cankuzo the distribution suggests postimpact alteration whereas in Luqa there are hints of possible formation of a layer of phyllosilicate materials

    04/18/1997 - Collective Soul To Perform At EIU.pdf

    Get PDF
    International audience► We present a spectroscopic method to discriminate biotic from abiotic carbonates. ► Infrared spectral modifications induced by thermal processing are investigated. ► We analyse carbonate samples with no evidences of biomineralization. ► Our method is a powerful tool for the search of life on Mars

    The vertical transport of methane from different potential emission types on Mars

    Get PDF
    The contrasting evolutionary behavior of the vertical profile of methane from three potential release scenarios is analysed using a global circulation model with assimilated temperature profiles. Understanding the evolving methane distribution is essential for interpretation of future retrievals of the methane vertical profile taken by instruments on the ExoMars Trace Gas Orbiter spacecraft. We show that at methane release rates constrained by previous observations and modelling studies, discriminating whether the methane source is a sustained or instantaneous surface emission requires at least ten sols of tracking the emission. A methane source must also be observed within five to ten sols of the initial emission to distinguish whether the emission occurs directly at the surface or within the atmosphere via destabilization of metastable clathrates. Assimilation of thermal data is shown to be critical for the most accurate back-tracking of an observed methane plume to its origin

    Sleep apnea predicts distinct alterations in glucose homeostasis and biomarkers in obese adults with normal and impaired glucose metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Notwithstanding previous studies supporting independent associations between obstructive sleep apnea (OSA) and prevalence of diabetes, the underlying pathogenesis of impaired glucose regulation in OSA remains unclear. We explored mechanisms linking OSA with prediabetes/diabetes and associated biomarker profiles. We hypothesized that OSA is associated with distinct alterations in glucose homeostasis and biomarker profiles in subjects with normal (NGM) and impaired glucose metabolism (IGM).</p> <p>Methods</p> <p>Forty-five severely obese adults (36 women) without certain comorbidities/medications underwent anthropometric measurements, polysomnography, and blood tests. We measured fasting serum glucose, insulin, selected cytokines, and calculated homeostasis model assessment estimates of insulin sensitivity (HOMA-IS) and pancreatic beta-cell function (HOMA-B).</p> <p>Results</p> <p>Both increases in apnea-hypopnea index (AHI) and the presence of prediabetes/diabetes were associated with reductions in HOMA-IS in the entire cohort even after adjustment for sex, race, age, and BMI (<it>P </it>= 0.003). In subjects with NGM (n = 30), OSA severity was associated with significantly increased HOMA-B (a trend towards decreased HOMA-IS) independent of sex and adiposity. OSA-related oxyhemoglobin desaturations correlated with TNF-α (r=-0.76; <it>P </it>= 0.001) in women with NGM and with IL-6 (rho=-0.55; <it>P </it>= 0.035) in women with IGM (n = 15) matched individually for age, adiposity, and AHI.</p> <p>Conclusions</p> <p>OSA is independently associated with altered glucose homeostasis and increased basal beta-cell function in severely obese adults with NGM. The findings suggest that moderate to severe OSA imposes an excessive functional demand on pancreatic beta-cells, which may lead to their exhaustion and impaired secretory capacity over time. The two distinct biomarker profiles linking sleep apnea with NGM and IGM via TNF-α and IL-6 have been discerned in our study to suggest that sleep apnea and particularly nocturnal oxyhemoglobin desaturations are associated with chronic metabolic fluxes and specific cytokine stressors that reflect links between sleep apnea and glucose metabolism. The study may help illuminate potential mechanisms for glucose dysregulation in OSA, and resolve some controversy over the associations of OSA with TNF-α and IL-6 in previous studies.</p
    corecore