18 research outputs found

    Using HEP experiment workflows for the benchmarking and accounting of WLCG computing resources

    Get PDF
    Benchmarking of CPU resources in WLCG has been based on the HEP-SPEC06 (HS06) suite for over a decade. It has recently become clear that HS06, which is based on real applications from non-HEP domains, no longer describes typical HEP workloads. The aim of the HEP-Benchmarks project is to develop a new benchmark suite for WLCG compute resources, based on real applications from the LHC experiments. By construction, these new benchmarks are thus guaranteed to have a score highly correlated to the throughputs of HEP applications, and a CPU usage pattern similar to theirs. Linux containers and the CernVM-FS filesystem are the two main technologies enabling this approach, which had been considered impossible in the past. In this paper, we review the motivation, implementation and outlook of the new benchmark suite

    Using HEP experiment workflows for the benchmarking and accounting of WLCG computing resources

    Get PDF
    International audienceBenchmarking of CPU resources in WLCG has been based on the HEP-SPEC06 (HS06) suite for over a decade. It has recently become clear that HS06, which is based on real applications from non-HEP domains, no longer describes typical HEP workloads. The aim of the HEP-Benchmarks project is to develop a new benchmark suite for WLCG compute resources, based on real applications from the LHC experiments. By construction, these new benchmarks are thus guaranteed to have a score highly correlated to the throughputs of HEP applications, and a CPU usage pattern similar to theirs. Linux containers and the CernVM-FS filesystem are the two main technologies enabling this approach, which had been considered impossible in the past. In this paper, we review the motivation, implementation and outlook of the new benchmark suite
    corecore