128 research outputs found
TeV Mini Black Hole Decay at Future Colliders
It is generally believed that mini black holes decay by emitting elementary
particles with a black body energy spectrum. The original calculation lead to
the conclusion that about the 90% of the black hole mass is radiated away in
the form of photons, neutrinos and light leptons, mainly electrons and muons.
With the advent of String Theory, such a scenario must be updated by including
new effects coming from the stringy nature of particles and interactions.By
taking for granted that black holes can be produced in hadronic collisions,
then their decay must take into account that: (i) we live in a D3-Brane
embedded into an higher dimensional bulk spacetime; (ii) fundamental
interactions, including gravity, are unified at TeV energy scale. Thus, the
formal description of the Hawking radiation mechanism has to be extended to the
case of more than four spacetime dimensions and include the presence of
D-branes. Furthermore, unification of fundamental interactions at an energy
scale many order of magnitude lower than the Planck energy implies that any
kind of fundamental particle, not only leptons, is expected to be emitted. A
detailed understanding of the new scenario is instrumental for optimal tuning
of detectors at future colliders, where, hopefully, this exciting new physics
will be tested. In this article we review higher dimensional black hole decay,
considering not only the emission of particles according to Hawking mechanism,
but also their near horizon QED/QCD interactions. The ultimate motivation is to
build up a phenomenologically reliable scenario, allowing a clear experimental
signature of the event.Comment: 22 pages, 9 figures, 4 tables; ``quick review'' for Class. and
Quantum Gra
Where does Cosmological Perturbation Theory Break Down?
We apply the effective field theory approach to the coupled metric-inflaton
system, in order to investigate the impact of higher dimension operators on the
spectrum of scalar and tensor perturbations in the short-wavelength regime. In
both cases, effective corrections at tree-level become important when the
Hubble parameter is of the order of the Planck mass, or when the physical wave
number of a cosmological perturbation mode approaches the square of the Planck
mass divided by the Hubble constant. Thus, the cut-off length below which
conventional cosmological perturbation theory does not apply is likely to be
much smaller than the Planck length. This has implications for the
observability of "trans-Planckian" effects in the spectrum of primordial
perturbations.Comment: 25 pages, uses FeynM
Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities
We investigate de Sitter solutions in non-local gravity as well as in
non-local gravity with Lagrange constraint multiplier. We examine a condition
to avoid a ghost and discuss a screening scenario for a cosmological constant
in de Sitter solutions. Furthermore, we explicitly demonstrate that three types
of the finite-time future singularities can occur in non-local gravity and
explore their properties. In addition, we evaluate the effective equation of
state for the universe and show that the late-time accelerating universe may be
effectively the quintessence, cosmological constant or phantom-like phases. In
particular, it is found that there is a case in which a crossing of the phantom
divide from the non-phantom (quintessence) phase to the phantom one can be
realized when a finite-time future singularity occurs. Moreover, it is
demonstrated that the addition of an term can cure the finite-time future
singularities in non-local gravity. It is also suggested that in the framework
of non-local gravity, adding an term leads to possible unification of the
early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General
Relativity and Gravitatio
Dark Energy and Gravity
I review the problem of dark energy focusing on the cosmological constant as
the candidate and discuss its implications for the nature of gravity. Part 1
briefly overviews the currently popular `concordance cosmology' and summarises
the evidence for dark energy. It also provides the observational and
theoretical arguments in favour of the cosmological constant as the candidate
and emphasises why no other approach really solves the conceptual problems
usually attributed to the cosmological constant. Part 2 describes some of the
approaches to understand the nature of the cosmological constant and attempts
to extract the key ingredients which must be present in any viable solution. I
argue that (i)the cosmological constant problem cannot be satisfactorily solved
until gravitational action is made invariant under the shift of the matter
lagrangian by a constant and (ii) this cannot happen if the metric is the
dynamical variable. Hence the cosmological constant problem essentially has to
do with our (mis)understanding of the nature of gravity. Part 3 discusses an
alternative perspective on gravity in which the action is explicitly invariant
under the above transformation. Extremizing this action leads to an equation
determining the background geometry which gives Einstein's theory at the lowest
order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy,
edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer
High microvessel density, an indirect measure of angiogenesis, has been shown to correlate with increased tumour size, lymph node involvement and poor prognosis in non-small-cell lung cancer (NSCLC). Tumour cell vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF) expression correlate with angiogenesis and a poor outcome in this disease. In a retrospective study VEGF and PD-ECGF expression and microvessel density were evaluated immunohistochemically in surgically resected specimens (T1–3, N0–2) from 223 patients with operable NSCLC using the VG1, P-GF.44C and JC70 monoclonal antibodies respectively. High VEGF immunoreactivity was seen in 104 (46.6%) and PD-ECGF in 72 (32.3%) cases and both were associated with high vascular grade tumours (P = 0.009 and P = 0.05 respectively). Linear regression analysis revealed a weak positive correlation between VEGF and PD-ECGF expression in cancer cells (r = 0.21;P = 0.002). Co-expression of VEGF and PD-ECGF was not associated with a higher microvessel density than VEGF or PD-ECGF only expressing tumours. Furthermore a proportion of high vascular grade tumours expressed neither growth factor. Univariate analysis revealed tumour size, nodal status, microvessel density and VEGF and PD-ECGF expression as significant prognostic factors. Tumour size (P< 0.02) and microvessel density (P< 0.04) remained significant on multivariate analysis. In conclusion, VEGF and PD-ECGF are important angiogenic growth factors and have prognostic significance in NSCLC. Furthermore the study underlines the prognostic significance of microvessel density in operable NSCLC. © 2000 Cancer Research Campaig
Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival.
We have determined the expression of transforming growth factor alpha (TGF alpha), amphiregulin (AR), CRIPTO, the epidermal growth factor receptor (EGFR), erbB-2, erbB-3, and tumor angiogenesis in a series of 195 patients with stage I-IIIA non-small cell lung cancer (NSCLC) treated with radical surgery to define their usefulness as prognostic indicators of survival. A variable degree of specific staining in cancer cells was observed for the three growth factors and for the three growth factor receptors in the majority of NSCLC patients. A statistically significant association between overexpression of TGF alpha, AR, and CRIPTO was observed. Enhanced expression of AR was significantly correlated with enhanced expression of erbB-2 and advanced T-stage. A direct association was also detected for overexpression of TGF alpha and of erbB-2 or erbB-3, respectively. Sex, tumor size, nodal status, stage, microvessel count, as a measure of neovascularization, and AR overexpression significantly correlated with overall survival at univariate analysis. In a Cox multivariate analysis, the only characteristics with an independent prognostic effect on OAS were microvessel count [relative hazard (RH), 6.61; P < 0.00001), nodal status (RH, 1.59; P = 0.0013), and AR overexpression (RH, 1.72; P = 0.02). These results suggest that evaluation of neoangiogenesis and of certain growth factors, such as AR, can be useful in addition to conventional pathological staging to select high-risk NSCLC patients who may benefit from post-surgical systemic therapies
Treatment with interleukin-2 in malignant pleural mesothelioma: immunological and angiogenetic assessment and prognostic impact
BACKGROUND: Administration of interleukin-2 (IL-2) has shown some effects on malignant pleural mesothelioma (MPM) tumour regression. The purpose of this study was to investigate the ability of IL-2 to modify immunological effector cells and angiogenesis in MPM patients and their prognostic value. METHODS: Tumour-infiltrating lymphocytes (CD4, CD8, Foxp3), mast cells (MCs) (tryptase and chymase), microvessel count (MVC) and VEGF were determined by immunohistochemistry in two series of MPM patients: 60 patients treated with intra-pleural preoperative IL-2 and 33 patients untreated. RESULTS: Tryptase MCs, and CD8 and Foxp3 lymphocytes were significantly increased in the IL-2-treated group, whereas MVC was significantly lower in the same group. Moreover, in the IL-2-treated group, greater tryptase + MCs and greater Foxp3 lymphocytes were associated with improved and poorer clinical outcomes, respectively. Notably, when these two immunological parameters were combined, they predicted outcomes more effectively. CONCLUSIONS: This study showed that IL-2 treatment leads to a significant increase of immunological parameters, concomitantly with a reduction in vasculature, providing new insight into the cancer mechanisms mediated by IL-2. Moreover, these results suggest that tryptase-positive MCs and Foxp3 + lymphocytes predict clinical outcomes in IL-2-treated patients, highlighting the critical role of the inflammatory response in mesothelioma cancer progression. British Journal of Cancer (2009) 101, 1869-1875. doi:10.1038/sj.bjc.6605438 www.bjcancer.com (C) 2009 Cancer Research U
Subsampling effects in neuronal avalanche distributions recorded in vivo
Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma=1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s) and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those calculated from LFP activity. Conclusions Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s) and sigma calculated from the physiological recordings may be selected over alternatives
- …