150 research outputs found

    Cosmological Implications of Domain Walls due to Duality Invariant Moduli Sector of Superstring Vacua

    Full text link
    We study cosmological implications of the duality (PSL(2,Z)PSL(2,{\bf Z})) invariant potential for the compactification radius TT, arising in a class of superstring vacua. We show that in spite of having only one minimum in the fundamental domain of the TT field there are two types of non-supersymmetric domain walls: one is associated with the discrete Peccei-Quinn symmetry TT+iT\to T+i, analogous to the axionic domain wall, and another one associated with the noncompact symmetry T1/TT\to 1/T, analogous to the Z2Z_2 domain walls. The first one is bound by stringy cosmic strings. The scale of such domain walls is governed by the scale of gaugino condensation (O(1016{\cal O} (10^{16} GeV) in the case of hidden E8E_8 gauge group), while the separation between minima is of order MplM_{pl}. We discuss the formation of walls and their cosmological implications: the walls must be gotten rid of, either by chopping by stringy cosmic strings and/or inflation. Since there is no usual Kibble mechanism to create strings, either one must assume they exist abinitioab initio, or one must conclude that string cosmologies require inflation. The non-perturbative potential dealt with here appears not to give the needed inflationary epoch.Comment: 10p., 3 figures, not included, minor wording change

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    Measurement properties of instruments to assess pain in children and adolescents with cancer: a systematic review protocol

    Get PDF
    Background: Pain in children and adolescents with cancer has been identified as an area where many healthcare professionals seek guidance. This protocol details a systematic review whose aim is to explore current knowledge regarding measurement instruments to assess pain (and pain-related distress) in children and adolescents with cancer. After completion of the review, the information will be used in the development of a clinical practice guideline. Methods: We will search four electronic databases (MEDLINE via PubMed, CINAHL, PsycINFO and HaPI). Additional relevant studies will be identified by reference checking and expert consultation. All citations will be screened independently by two reviewers in a three-step approach: first selection based on title, second selection based on abstract, third selection based on full-text. Studies in children and adolescents with cancer that aimed to evaluate the clinimetric properties of an existing pain measurement instrument or to develop a new pain measurement instrument and that include at least one relevant outcome (reliability, validity, responsiveness, interpretability, clinical utility) are eligible for inclusion. For all steps of evidence selection, a detailed list with eligibility criteria will be determined a priori. Data extraction and quality assessment of included studies (according to the COnsensus-based Standards for the selection of health Measurement INstruments, COSMIN criteria) will be conducted independently by two authors. Discussion: This systematic review will provide an overview of the current literature regarding measurement instruments to assess pain in children and adolescents with cancer. This knowledge synthesis will be used to formulate recommendations for clinical

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Reducing pain in children with cancer: Methodology for the development of a clinical practice guideline

    Get PDF
    Abstract Although pain is one of the most prevalent and bothersome symptoms children with cancer experience, evidence-based guidance regarding assessment and management is lacking. With 44 international, multidisciplinary healthcare professionals and nine patient representatives, we aimed to develop a clinical practice guideline (following GRADE methodology), addressing assessment and pharmacological, psychological, and physical management of tumor-, treatment-, and procedure-related pain in children with cancer. In this paper, we present our thorough methodology for this development, including the challenges we faced and how we approached these. This lays the foundation for our clinical practice guideline, for which there is a high clinical demand

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    corecore