1,724 research outputs found

    Trial protocol OPPTIMUM : does progesterone prophylaxis for the prevention of preterm labour improve outcome?

    Get PDF
    Background Preterm birth is a global problem, with a prevalence of 8 to 12% depending on location. Several large trials and systematic reviews have shown progestogens to be effective in preventing or delaying preterm birth in selected high risk women with a singleton pregnancy (including those with a short cervix or previous preterm birth). Although an improvement in short term neonatal outcomes has been shown in some trials these have not consistently been confirmed in meta-analyses. Additionally data on longer term outcomes is limited to a single trial where no difference in outcomes was demonstrated at four years of age of the child, despite those in the “progesterone” group having a lower incidence of preterm birth. Methods/Design The OPPTIMUM study is a double blind randomized placebo controlled trial to determine whether progesterone prophylaxis to prevent preterm birth has long term neonatal or infant benefit. Specifically it will study whether, in women with singleton pregnancy and at high risk of preterm labour, prophylactic vaginal natural progesterone, 200 mg daily from 22 – 34 weeks gestation, compared to placebo, improves obstetric outcome by lengthening pregnancy thus reducing the incidence of preterm delivery (before 34 weeks), improves neonatal outcome by reducing a composite of death and major morbidity, and leads to improved childhood cognitive and neurosensory outcomes at two years of age. Recruitment began in 2009 and is scheduled to close in Spring 2013. As of May 2012, over 800 women had been randomized in 60 sites. Discussion OPPTIMUM will provide further evidence on the effectiveness of vaginal progesterone for prevention of preterm birth and improvement of neonatal outcomes in selected groups of women with singleton pregnancy at high risk of preterm birth. Additionally it will determine whether any reduction in the incidence of preterm birth is accompanied by improved childhood outcome

    Dysregulation of T cell receptor N-glycosylation: A molecular mechanism involved in ulcerative colitis

    Get PDF
    The incidence of inflammatory bowel disease is increasing worldwide and the underlying molecular mechanisms are far from being fully elucidated. Herein, we evaluated the role of N-glycosylation dysregulation in T cells as a key mechanism in the ulcerative colitis (UC) pathogenesis. The evaluation of the branched N-glycosylation levelsandprofile of intestinalTcell receptor (TCR)wereassessedin colonic biopsies fromUCpatientsand healthy controls. Expression alterations of the glycosyltransferase gene MGAT5 were also evaluated. We demonstrated thatUCpatients exhibit a dysregulation ofTCRbranchedN-glycosylationonlamina propriaTlymphocytes. Patients with severe UC showed the most pronounced defect on N-glycan branching in T cells. Moreover, UC patients showed a significant reduction of MGAT5 gene transcription in T lymphocytes. In this study, we disclose for the first time that a deficiency in branched N-glycosylation on TCR due to a reduced MGAT5 gene expression is a new molecular mechanism underlying UC pathogenesis, being a potential novel biomarker with promising clinical and therapeutic applications.This work was supported by grants from the Portuguese Foundation for Science and Technology (FCT), project grants (PTDC/ CVT/111358/2009; PTDC/BBB-EBI/0786/2012; EXPL/ BIM-MEC/0149/2012), ‘financiados no âmbito do Programa Operacional Temático Factores de Competitividade (COMPETE) e comparticipado pelo fundo Comunitário Europeu FEDER’, e do Quadro de Referência Estratégia Nacio-nal QREN. This work was further supported by a portuguese grant from ‘Grupo de Estudo da Doenc¸a Inflamatória Intestinal’ (GEDII). S.S.P. (SFRH/BPD/63094/2009); S.C. (SFRH/BD/ 77386/2011) also acknowledge FCT. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education, and is partially supported by FCT

    RLIP76, a Glutathione-Conjugate Transporter, Plays a Major Role in the Pathogenesis of Metabolic Syndrome

    Get PDF
    PURPOSE: Characteristic hypoglycemia, hypotriglyceridemia, hypocholesterolemia, lower body mass, and fat as well as pronounced insulin-sensitivity of RLIP76⁻/⁻ mice suggested to us the possibility that elevation of RLIP76 in response to stress could itself elicit metabolic syndrome (MSy). Indeed, if it were required for MSy, drugs used to treat MSy should have no effect on RLIP76⁻/⁻ mice. RESEARCH DESIGN AND METHODS: Blood glucose (BG) and lipid measurements were performed in RLIP76⁺/⁺ and RLIP76⁻/⁻ mice, using Ascensia Elite Glucometer® for glucose and ID Labs kits for cholesterol and triglycerides assays. The ultimate effectors of gluconeogenesis are the three enzymes: PEPCK, F-1,6-BPase, and G6Pase, and their expression is regulated by PPARγ and AMPK. The activity of these enzymes was tested by protocols standardized by us. Expressions of RLIP76, PPARα, PPARγ, HMGCR, pJNK, pAkt, and AMPK were performed by Western-blot and tissue staining. RESULTS: The concomitant activation of AMPK and PPARγ by inhibiting transport activity of RLIP76, despite inhibited activity of key glucocorticoid-regulated hepatic gluconeogenic enzymes like PEPCK, G6Pase and F-1,6-BP in RLIP76⁻/⁻ mice, is a salient finding of our studies. The decrease in RLIP76 protein expression by rosiglitazone and metformin is associated with an up-regulation of PPARγ and AMPK. CONCLUSIONS/SIGNIFICANCE: All four drugs, rosiglitazone, metformin, gemfibrozil and atorvastatin failed to affect glucose and lipid metabolism in RLIP76⁻/⁻ mice. Studies confirmed a model in which RLIP76 plays a central role in the pathogenesis of MSy and RLIP76 loss causes profound and global alterations of MSy signaling functions. RLIP76 is a novel target for single-molecule therapeutics for metabolic syndrome

    GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge.</p> <p>Results</p> <p>Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few.</p> <p>Conclusion</p> <p>GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at <url>http://pcarvalho.com/patternlab</url>.</p

    Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain

    Get PDF
    BACKGROUND: The complement cascade not only provides protection from infection but can also mediate destructive inflammation. Complement is also involved in elimination of neuronal synapses which is essential for proper development, but can be detrimental during aging and disease. C1q, required for several of these complement-mediated activities, is present in the neuropil, microglia, and a subset of interneurons in the brain. METHODS: To identify the source(s) of C1q in the brain, the C1qa gene was selectively inactivated in the microglia or Thy-1(+) neurons in both wild type mice and a mouse model of Alzheimer’s disease (AD), and C1q synthesis assessed by immunohistochemistry, QPCR, and western blot analysis. RESULTS: While C1q expression in the brain was unaffected after inactivation of C1qa in Thy-1(+) neurons, the brains of C1qa (FL/FL) :Cx3cr1 (CreERT2) mice in which C1qa was ablated in microglia were devoid of C1q with the exception of limited C1q in subsets of interneurons. Surprisingly, this loss of C1q occurred even in the absence of tamoxifen by 1 month of age, demonstrating that Cre activity is tamoxifen-independent in microglia in Cx3cr1 (CreERT2/WganJ) mice. C1q expression in C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice continued to decline and remained almost completely absent through aging and in AD model mice. No difference in C1q was detected in the liver or kidney from C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice relative to controls, and C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice had minimal, if any, reduction in plasma C1q. CONCLUSIONS: Thus, microglia, but not neurons or peripheral sources, are the dominant source of C1q in the brain. While demonstrating that the Cx3cr1 (CreERT2/WganJ) deleter cannot be used for adult-induced deletion of genes in microglia, the model described here enables further investigation of physiological roles of C1q in the brain and identification of therapeutic targets for the selective control of complement-mediated activities contributing to neurodegenerative disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-017-0814-9) contains supplementary material, which is available to authorized users
    corecore