11 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Dwarf geckos and giant rivers: The role of the SĂŁo Francisco River in the evolution of Lygodactylus klugei (Squamata: Gekkonidae) in the semi-arid Caatinga of north-eastern Brazil

    No full text
    Species diversification can be strongly influenced by geomorphological features, such as mountains, valleys and rivers. Rivers can act as hard or soft barriers to gene flow depending on their size, speed of flow, historical dynamics and regional topographical characteristics. The São Francisco River (SFR) is the largest perennial river in the Caatinga biome in north-eastern Brazil and has been considered a barrier to gene flow and dispersal. Herein, we evaluated the role of the SFR on the evolution of Lygodactylus klugei, a small gecko from the Caatinga. Using a single-locus species delimitation method (generalized mixed Yule coalescent), we defined lineages (haploclades). Subsequently, we evaluated the role of the SFR in structuring genetic diversity in this species using a multilocus approach to quantify migration across margins. We also evaluated genetic structure based on nuclear markers, testing the number of populations found through an assignment test (STRUCTURE) across the species distribution. We recovered two mitochondrial lineages structured with respect to the SFR, but only a single population was inferred from nuclear markers. Given that we detected an influence of the SFR only on mitochondrial markers, we suggest that the current river course has acted as a relatively recent geographical barrier for L. klugei, for ~450 000 years. © 2019 The Linnean Society of London, Biological Journal of the Linnean Society

    Diversification with gene flow and niche divergence in a lizard species along the South American “diagonal of open formations”

    No full text
    Aim: To assess the effects of historical events on the tempo and mode of diversification of the lizard Polychrus acutirostris along the South American diagonal of open formations (DOF). Location: Caatinga and Cerrado biomes in Brazil. Methods: We sequenced fragments of one mtDNA and three nuDNA genes of 68 individuals from 33 localities. We used population assignment methods to access genetic structure and estimate lineage boundaries. Next, we estimated lineage relationships, intraspecific diversity, environmental niche similarity and demographic history. Finally, we tested 12 diversification scenarios using an approximate Bayesian computation (ABC) approach. Results: We recovered three non-overlapping, geographically structured lineages corresponding to Caatinga, north-east Cerrado and south-west Cerrado, with the major divergence event dating to the Late Neogene. We also recovered a complex scenario of divergence associated with gene flow and niche divergence. Main conclusions: We show a complex history of diversification along the South American DOF. Our findings support the role of environmental features as the likely drivers of P. acutirostris intraspecific diversification during the Late Neogene. © 2018 John Wiley & Sons Lt

    The evolutionary history of Lygodactylus lizards in the South American open diagonal

    No full text
    The Pleistocenic Arc Hypothesis (PAH) posits that South American Seasonally Dry Tropical Forests (SDTF) were interconnected during Pleistocene glacial periods, enabling the expansion of species ranges that were subsequently fragmented in interglacial periods, promoting speciation. The lizard genus Lygodactylus occurs in Africa, Madagascar, and South America. Compared to the high diversity of African Lygodactylus, only two species are known to occur in South America, L. klugei and L. wetzeli, distributed in SDTFs and the Chaco, respectively. We use a phylogenetic approach based on mitochondrial (ND2) and nuclear (RAG-1) markers covering the known range of South American Lygodactylus to investigate (i) if they are monophyletic relative to their African congeners, (ii) if their divergence is congruent with the fragmentation of the PAH, and (iii) if cryptic diversity exists within currently recognized species. Maximum likelihood and Bayesian phylogenetic analyses recovered a well-supported monophyletic South American Lygodactylus, presumably resulting from a single trans-Atlantic dispersal event 29 Mya. Species delimitation analyses supported the existence of five putative species, three of them undescribed. Divergence times among L. klugei and the three putative undescribed species, all endemic to the SDTFs, are not congruent with the fragmentation of the PAH. However, fragmentation of the once broader and continuous SDTFs likely influenced the divergence of L. wetzeli in the Chaco and Lygodactylus sp. 3 (in a SDTF enclave in the Cerrado). © 2018 Elsevier Inc

    The role of strict nature reserves in protecting genetic diversity in a semiarid vegetation in Brazil

    No full text
    Genetic diversity is an important component of biodiversity, providing the means for species to evolve and adapt in changing environments. Although regions that retain high genetic diversity provide ideal targets for conservation due to their evolutionary potential, they have been poorly mapped in the Neotropics. Here, we mapped genetic diversity, expressed in this study by nucleotide diversity, for five lizards, four amphibians, and one spider widely distributed in the Brazilian Caatinga, a semiarid vegetation. We identified areas that contain higher genetic diversity, which may be used to establish conservation priorities for the region, and evaluated their representativeness within strict nature reserves. Our results show that only 1.5% of the areas holding higher genetic diversity are within strict nature reserves. However, we show that very high genetic diversity regions are overrepresented inside strict nature reserves and encompass areas such as “Brejo Paraibano”, Catimbau National Park, and part of the Borborema plateau. Thus, the maintenance of biota’s evolutionary potential relies upon the inclusion of areas with higher genetic diversity in future conservation planning. © 2019, Springer Nature B.V

    Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil

    No full text
    Many studies propose that Quaternary climatic cycles contracted and/or expanded the ranges of species and biomes. Strong expansion–contraction dynamics of biomes presume concerted demographic changes of associated fauna. The analysis of temporal concordance of demographic changes can be used to test the influence of Quaternary climate on diversification processes. Hierarchical approximate Bayesian computation (hABC) is a powerful and flexible approach that models genetic data from multiple species, and can be used to estimate the temporal concordance of demographic processes. Using available single-locus data, we can now perform large-scale analyses, both in terms of number of species and geographic scope. Here, we first compared the power of four alternative hABC models for a collection of single-locus data. We found that the model incorporating an a priori hypothesis about the timing of simultaneous demographic change had the best performance. Second, we applied the hABC models to a data set of seven squamate and four amphibian species occurring in the Seasonally Dry Tropical Forests (Caatinga) in northeastern Brazil, which, according to paleoclimatic evidence, experienced an increase in aridity during the Pleistocene. If this increase was important for the diversification of associated xeric-adapted species, simultaneous population expansions should be evident at the community level. We found a strong signal of synchronous population expansion in the Late Pleistocene, supporting the increase of the Caatinga during this time. This expansion likely enhanced the formation of communities adapted to high aridity and seasonality and caused regional extirpation of taxa adapted to wet forest. © 2017 John Wiley & Sons Lt
    corecore