201 research outputs found
Gradual Internal Reforming of Ethanol in Solid Oxide Fuel cells
AbstractElectrolyte (yttria-stabilised zirconia, YSZ) supported solid oxide fuel cells (SOFCs) were fabricated using spin coating of standard LSM cathode and Ni-YSZ cermet anode. A ceria-based catalytic layer was deposited onto the anode with a special current collector design. Such a single cell configuration allows operation by gradual internal reforming of direct carbon-containing fuels. First, the fabricated single cells were operated with hydrogen to determine the optimised conditions of fuel concentration and flow rate regarding faradaïc efficiency. Then, the fuel was switched to dry ethanol and the cells were operated for several hours (100h) with good stability. Post-operation electron microcopy analyses revealed no carbon formation in the anode layer. The results indicate that the gradual internal reforming mechanism is effective, opening up the way to multi-fuel SOFCs, provided that a suitable catalyst layer and cell design are available
NEW SEISMIC SOURCE ZONE MODEL FOR PORTUGAL AND AZORES
The development of seismogenic source models is one of the first steps in seismic hazard assessment. In seismic hazard terminology, seismic source zones (SSZ) are polygons (or volumes) that delineate areas with homogeneous characteristics of seismicity. The importance of using knowledge on geology, seismicity and tectonics in the definition of source zones has been recognized for a long time [1]. However, the definition of SSZ tends to be subjective and controversial. Using SSZ based on broad geology, by spreading the seismicity clusters throughout the areal extent of a zone, provides a way to account for possible long-term non-stationary seismicity behavior [2,3]. This approach effectively increases seismicity rates in regions with no significant historical or instrumental seismicity, while decreasing seismicity rates in regions that display higher rates of seismicity. In contrast, the use of SSZ based on concentrations of seismicity or spatial smoothing results in stationary behavior [4]. In the FP7 Project SHARE (Seismic Hazard Harmonization in Europe), seismic hazard will be assessed with a logic tree approach that allows for three types of branches for seismicity models: a) smoothed seismicity, b) SSZ, c) SSZ and faults. In this context, a large-scale zonation model for use in the smoothed seismicity branch, and a new consensus SSZ model for Portugal and Azores have been developed. The new models were achieved with the participation of regional experts by combining and adapting existing models and incorporating new regional knowledge of the earthquake potential. The main criteria used for delineating the SSZ include distribution of seismicity, broad geological architecture, crustal characteristics (oceanic versus continental, tectonically active versus stable, etc.), historical catalogue completeness, and the characteristics of active or potentially-active faults. This model will be integrated into an Iberian model of SSZ to be used in the Project SHARE seismic hazard assessment
COMPILATION OF ACTIVE FAULT DATA IN PORTUGAL FOR USE IN SEISMIC HAZARD ANALYSIS
To estimate where future earthquakes are likely to occur, it is essential to combine information about past earthquakes with knowledge about the location and seismogenic properties of active faults. For this reason, robust probabilistic seismic hazard analysis (PSHA) integrates seismicity and active fault data. Existing seismic hazard assessments for Portugal rely exclusively on seismicity data and do not incorporate data on active faults. Project SHARE (Seismic Hazard Harmonization in Europe) is an EC-funded initiative (FP7) that aims to evaluate European seismic hazards using an integrated, standardized approach. In the context of SHARE, we are developing a fully-parameterized active fault database for Portugal that incorporates existing compilations, updated according to the most recent publications. The seismogenic source model derived for SHARE will be the first model for Portugal to include fault data and follow an internationally standardized approach. This model can be used to improve both seismic hazard and risk analyses and will be combined with the Spanish database for use in Iberian- and European-scale assessments
Physical training prevents body weight gain but does not modify adipose tissue gene expression
The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns
Incorporating Descriptive Metadata into Seismic Source Zone Models for Seismic Hazard Assessment: A case study of the Azores-West Iberian region
In probabilistic seismic-hazard analysis (PSHA), seismic source zone (SSZ) models are widely used to account for the contribution to the hazard from earth- quakes not directly correlated with geological structures. Notwithstanding the impact of SSZ models in PSHA, the theoretical framework underlying SSZ models and the criteria used to delineate the SSZs are seldom explicitly stated and suitably docu- mented. In this paper, we propose a methodological framework to develop and docu- ment SSZ models, which includes (1) an assessment of the appropriate scale and degree of stationarity, (2) an assessment of seismicity catalog completeness-related issues, and (3) an evaluation and credibility ranking of physical criteria used to delin- eate the boundaries of the SSZs. We also emphasize the need for SSZ models to be supported by a comprehensive set of metadata documenting both the unique character- istics of each SSZ and the criteria used to delineate its boundaries. This procedure ensures that the uncertainties in the model can be properly addressed in the PSHA and that the model can be easily updated whenever new data are available. The pro- posed methodology is illustrated using the SSZ model developed for the Azores–West Iberian region in the context of the Seismic Hazard Harmonization in Europe project (project SHARE) and some of the most relevant SSZs are discussed in detail
Properties and DEFC tests of Nafion Functionalized titanate nanotubes composite membranes prepared by melt extrusion
Nafion based composites are promising materials to improve the performance of direct ethanol fuel cells. In this work, composite membranes of Nafion and titanate nanotubes functionalized with sulfonic acid groups were prepared by melt extrusion and tested in a direct ethanol fuel cell. Far and mid infrared spectroscopies evidenced the formation of ionic bridges between the sulfonic acid groups of both functionalized nanoparticles and the ionomer. Small angle X ray scattering measurements revealed that the melt extrusion method leads to an uniform distribution of the inorganic phase in the ionomer matrix. Such structural analysis indicated that the improved the proton conduction properties of the composites, even with the addition of a high concentration of functionalized nanoparticles, are an outcome of the synergistic ionic network due to the hydrid organic inorganic proton conducting phases. However, an improvement of the fuel cell performance is observed for 2.5 wt of functionalized titanate nanotubes, which is a result of the lower ethanol crossover and the plasticizing effect of the aliphatic segments of the organic moieties grafted at the surface of the titanate nanoparticle
The Brazilian Developments On The Regional Atmospheric Modeling System (brams 5.2): An Integrated Environmental Model Tuned For Tropical Areas
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model developers. © Author(s) 2017.1011892222014/01563-1, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo2014/01564-8, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo2015/10206-0, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo306340/2011-9, Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Comparative lengths of digestive tracts of seven didelphid marsupials (Mammalia) in relation to diet
- …