190 research outputs found

    Identification and Analysis of the Active Phytochemicals from the Anti-Cancer Botanical Extract Bezielle

    Get PDF
    Bezielle is a botanical extract that has selective anti-tumor activity, and has shown a promising efficacy in the early phases of clinical testing. Bezielle inhibits mitochondrial respiration and induces reactive oxygen species (ROS) in mitochondria of tumor cells but not in non-transformed cells. The generation of high ROS in tumor cells leads to heavy DNA damage and hyper-activation of PARP, followed by the inhibition of glycolysis. Bezielle therefore belongs to a group of drugs that target tumor cell mitochondria, but its cytotoxicity involves inhibition of both cellular energy producing pathways. We found that the cytotoxic activity of the Bezielle extract in vitro co-purified with a defined fraction containing multiple flavonoids. We have isolated several of these Bezielle flavonoids, and examined their possible roles in the selective anti-tumor cytotoxicity of Bezielle. Our results support the hypothesis that a major Scutellaria flavonoid, scutellarein, possesses many if not all of the biologically relevant properties of the total extract. Like Bezielle, scutellarein induced increasing levels of ROS of mitochondrial origin, progressive DNA damage, protein oxidation, depletion of reduced glutathione and ATP, and suppression of both OXPHOS and glycolysis. Like Bezielle, scutellarein was selectively cytotoxic towards cancer cells. Carthamidin, a flavonone found in Bezielle, also induced DNA damage and oxidative cell death. Two well known plant flavonoids, apigenin and luteolin, had limited and not selective cytotoxicity that did not depend on their pro-oxidant activities. We also provide evidence that the cytotoxicity of scutellarein was increased when other Bezielle flavonoids, not necessarily highly cytotoxic or selective on their own, were present. This indicates that the activity of total Bezielle extract might depend on a combination of several different compounds present within it

    Bezielle Selectively Targets Mitochondria of Cancer Cells to Inhibit Glycolysis and OXPHOS

    Get PDF
    Bezielle (BZL101) is a candidate oral drug that has shown promising efficacy and excellent safety in the early phase clinical trials for advanced breast cancer. Bezielle is an aqueous extract from the herb Scutellaria barbata. We have reported previously that Bezielle was selectively cytotoxic to cancer cells while sparing non-transformed cells. In tumor, but not in non-transformed cells, Bezielle induced generation of ROS and severe DNA damage followed by hyperactivation of PARP, depletion of the cellular ATP and NAD, and inhibition of glycolysis. We show here that tumor cells' mitochondria are the primary source of reactive oxygen species induced by Bezielle. Treatment with Bezielle induces progressively higher levels of mitochondrial superoxide as well as peroxide-type ROS. Inhibition of mitochondrial respiration prevents generation of both types of ROS and protects cells from Bezielle-induced death. In addition to glycolysis, Bezielle inhibits oxidative phosphorylation in tumor cells and depletes mitochondrial reserve capacity depriving cells of the ability to produce ATP. Tumor cells lacking functional mitochondria maintain glycolytic activity in presence of Bezielle thus supporting the hypothesis that mitochondria are the primary target of Bezielle. The metabolic effects of Bezielle towards normal cells are not significant, in agreement with the low levels of oxidative damage that Bezielle inflicts on them. Bezielle is therefore a drug that selectively targets cancer cell mitochondria, and is distinguished from other such drugs by its ability to induce not only inhibition of OXPHOS but also of glycolysis. This study provides a better understanding of the mechanism of Bezielle's cytotoxicity, and the basis of its selectivity towards cancer cells

    A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Risk adjustment and mortality prediction in studies of critical care are usually performed using acuity of illness scores, such as Acute Physiology and Chronic Health Evaluation II (APACHE II), which emphasize physiological derangement. Common risk adjustment systems used in administrative datasets, like the Charlson index, are entirely based on the presence of co-morbid illnesses. The purpose of this study was to compare the discriminative ability of the Charlson index to the APACHE II in predicting hospital mortality in adult multisystem ICU patients.</p> <p>Methods</p> <p>This was a population-based cohort design. The study sample consisted of adult (>17 years of age) residents of the Calgary Health Region admitted to a multisystem ICU between April 2002 and March 2004. Clinical data were collected prospectively and linked to hospital outcome data. Multiple regression analyses were used to compare the performance of APACHE II and the Charlson index.</p> <p>Results</p> <p>The Charlson index was a poor predictor of mortality (C = 0.626). There was minimal difference between a baseline model containing age, sex and acute physiology score (C = 0.74) and models containing either chronic health points (C = 0.76) or Charlson index variations (C = 0.75, 0.76, 0.77). No important improvement in prediction occurred when the Charlson index was added to the full APACHE II model (C = 0.808 to C = 0.813).</p> <p>Conclusion</p> <p>The Charlson index does not perform as well as the APACHE II in predicting hospital mortality in ICU patients. However, when acuity of illness scores are unavailable or are not recorded in a standard way, the Charlson index might be considered as an alternative method of risk adjustment and therefore facilitate comparisons between intensive care units.</p

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Proof of concept, randomized, placebo-controlled study of the effect of simvastatin on the course of age-related macular degeneration

    Get PDF
    BACKGROUND: HMG Co-A reductase inhibitors are ubiquitous in our community yet their potential role in age-related macular degeneration (AMD) remains to be determined. METHODOLOGY/PRINCIPAL FINDINGS: OBJECTIVES: To evaluate the effect of simvastatin on AMD progression and the effect modification by polymorphism in apolipoprotein E (ApoE) and complement factor H (CFH) genes. DESIGN: A proof of concept double-masked randomized controlled study. PARTICIPANTS: 114 participants aged 53 to 91 years, with either bilateral intermediate AMD or unilateral non-advanced AMD (with advanced AMD in fellow eye), BCVA ≥ 20/60 in at least one eye, and a normal lipid profile. INTERVENTION: Simvastatin 40 mg/day or placebo, allocated 1:1. MAIN OUTCOME MEASURES: Progression of AMD either to advanced AMD or in severity of non-advanced AMD. Results. The cumulative AMD progression rates were 70% in the placebo and 54% in the simvastatin group. Intent to treat multivariable logistic regression analysis, adjusted for age, sex, smoking and baseline AMD severity, showed a significant 2-fold decrease in the risk of progression in the simvastatin group: OR 0.43 (0.18-0.99), p = 0.047. Post-hoc analysis stratified by baseline AMD severity showed no benefit from treatment in those who had advanced AMD in the fellow eye before enrolment: OR 0.97 (0.27-3.52), p = 0.96, after adjusting for age, sex and smoking. However, there was a significant reduction in the risk of progression in the bilateral intermediate AMD group compared to placebo [adjusted OR 0.23 (0.07-0.75), p = 0.015]. The most prominent effect was observed amongst those who had the CC (Y402H) at risk genotype of the CFH gene [OR 0.08 (0.02-0.45), p = 0.004]. No evidence of harm from simvastatin intervention was detected. CONCLUSION/SIGNIFICANCE: Simvastatin may slow progression of non-advanced AMD, especially for those with the at risk CFH genotype CC (Y402H). Further exploration of the potential use of statins for AMD, with emphasis on genetic subgroups, is warranted. TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry (ANZCTR) ACTRN1260500032065
    corecore