43 research outputs found
Accreting Protoplanets in the LkCa 15 Transition Disk
Exoplanet detections have revolutionized astronomy, offering new insights
into solar system architecture and planet demographics. While nearly 1900
exoplanets have now been discovered and confirmed, none are still in the
process of formation. Transition discs, protoplanetary disks with inner
clearings best explained by the influence of accreting planets, are natural
laboratories for the study of planet formation. Some transition discs show
evidence for the presence of young planets in the form of disc asymmetries or
infrared sources detected within their clearings, as in the case of LkCa 15.
Attempts to observe directly signatures of accretion onto protoplanets have
hitherto proven unsuccessful. Here we report adaptive optics observations of
LkCa 15 that probe within the disc clearing. With accurate source positions
over multiple epochs spanning 2009 - 2015, we infer the presence of multiple
companions on Keplerian orbits. We directly detect H{\alpha} emission from the
innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into
the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item
Recommended from our members
The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager
This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30-100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.Z.H.D. and B.C.M. acknowledge a Discovery Grant and Accelerator Supplement from the Natural Science and Engineering Research Council of Canada. Supported by NSF grants AST-0909188, AST-1313718 (J.R.G., J.J.W., P.G.K.), AST-141378 (G.D., M.F.), and AST-1411868 (K.F., J.L.P., A.R., K.W.D.). Supported by NASA grants NNX15AD95G/NEXSS, NNX14AJ80G, and NNX11AD21G (J.R.G., J.J.W., P.G.K.)
Recommended from our members
The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager
This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30-100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.Z.H.D. and B.C.M. acknowledge a Discovery Grant and Accelerator Supplement from the Natural Science and Engineering Research Council of Canada. Supported by NSF grants AST-0909188, AST-1313718 (J.R.G., J.J.W., P.G.K.), AST-141378 (G.D., M.F.), and AST-1411868 (K.F., J.L.P., A.R., K.W.D.). Supported by NASA grants NNX15AD95G/NEXSS, NNX14AJ80G, and NNX11AD21G (J.R.G., J.J.W., P.G.K.)
Recommended from our members
The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au
We present a statistical analysis of the first 300 stars observed by the
Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six
detected planets and three brown dwarfs; from these detections and our contrast
curves we infer the underlying distributions of substellar companions with
respect to their mass, semi-major axis, and host stellar mass. We uncover a
strong correlation between planet occurrence rate and host star mass, with
stars M 1.5 more likely to host planets with masses between 2-13
M and semi-major axes of 3-100 au at 99.92% confidence. We fit a
double power-law model in planet mass (m) and semi-major axis (a) for planet
populations around high-mass stars (M 1.5M) of the form , finding = -2.4 0.8 and
= -2.0 0.5, and an integrated occurrence rate of %
between 5-13 M and 10-100 au. A significantly lower occurrence rate
is obtained for brown dwarfs around all stars, with 0.8% of
stars hosting a brown dwarf companion between 13-80 M and 10-100
au. Brown dwarfs also appear to be distributed differently in mass and
semi-major axis compared to giant planets; whereas giant planets follow a
bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs
exhibit just the opposite behaviors. Comparing to studies of short-period giant
planets from the RV method, our results are consistent with a peak in
occurrence of giant planets between ~1-10 au. We discuss how these trends,
including the preference of giant planets for high-mass host stars, point to
formation of giant planets by core/pebble accretion, and formation of brown
dwarfs by gravitational instability
Recommended from our members
The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au
We present a statistical analysis of the first 300 stars observed by the
Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six
detected planets and three brown dwarfs; from these detections and our contrast
curves we infer the underlying distributions of substellar companions with
respect to their mass, semi-major axis, and host stellar mass. We uncover a
strong correlation between planet occurrence rate and host star mass, with
stars M 1.5 more likely to host planets with masses between 2-13
M and semi-major axes of 3-100 au at 99.92% confidence. We fit a
double power-law model in planet mass (m) and semi-major axis (a) for planet
populations around high-mass stars (M 1.5M) of the form , finding = -2.4 0.8 and
= -2.0 0.5, and an integrated occurrence rate of %
between 5-13 M and 10-100 au. A significantly lower occurrence rate
is obtained for brown dwarfs around all stars, with 0.8% of
stars hosting a brown dwarf companion between 13-80 M and 10-100
au. Brown dwarfs also appear to be distributed differently in mass and
semi-major axis compared to giant planets; whereas giant planets follow a
bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs
exhibit just the opposite behaviors. Comparing to studies of short-period giant
planets from the RV method, our results are consistent with a peak in
occurrence of giant planets between ~1-10 au. We discuss how these trends,
including the preference of giant planets for high-mass host stars, point to
formation of giant planets by core/pebble accretion, and formation of brown
dwarfs by gravitational instability
Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO
Recommended from our members
The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager
Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30-100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry
Recommended from our members
GPI Spectra of HR 8799 c, d, and e from 1.5 to 2.4 μm with KLIP Forward Modeling
We explore KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR 8799, using PyKLIP, and show algorithm stability with varying KLIP parameters. We report new and re-reduced spectrophotometry of HR 8799 c, d, and e in the H and K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting simulated sources and recovering them over a range of parameters. The K1/K2 spectra for HR 8799 c and d are similar to previously published results from the same data set. We also present a K-band spectrum of HR 8799 e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We show that HR 8799 c and d show significant differences in their H and K spectra, but do not find any conclusive differences between d and e, nor between c and e, likely due to large error bars in the recovered spectrum of e. Compared to M-, L-, and T-type field brown dwarfs, all three planets are most consistent with mid- and late-L spectral types. All objects are consistent with low gravity, but a lack of standard spectra for low gravity limit the ability to fit the best spectral type. We discuss how dedicated modeling efforts can better fit HR 8799 planets' near-IR flux, as well as how differences between the properties of these planets can be further explored
