216 research outputs found

    Spectral analysis of a nonself-adjoint differential operator

    Get PDF

    A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

    Full text link
    In this article we consider linear operators satisfying a generalized commutation relation of a type of the Heisenberg-Lie algebra. It is proven that a generalized inequality of the Hardy's uncertainty principle lemma follows. Its applications to time operators and abstract Dirac operators are also investigated

    The electron density is smooth away from the nuclei

    Full text link
    We prove that the electron densities of electronic eigenfunctions of atoms and molecules are smooth away from the nuclei.Comment: 16 page

    Palm pairs and the general mass-transport principle

    Get PDF
    We consider a lcsc group G acting properly on a Borel space S and measurably on an underlying sigma-finite measure space. Our first main result is a transport formula connecting the Palm pairs of jointly stationary random measures on S. A key (and new) technical result is a measurable disintegration of the Haar measure on G along the orbits. The second main result is an intrinsic characterization of the Palm pairs of a G-invariant random measure. We then proceed with deriving a general version of the mass-transport principle for possibly non-transitive and non-unimodular group operations first in a deterministic and then in its full probabilistic form.Comment: 26 page

    The Levi Problem On Strongly Pseudoconvex GG-Bundles

    Full text link
    Let GG be a unimodular Lie group, XX a compact manifold with boundary, and MM the total space of a principal bundle GMXG\to M\to X so that MM is also a strongly pseudoconvex complex manifold. In this work, we show that if GG acts by holomorphic transformations satisfying a local property, then the space of square-integrable holomorphic functions on MM is infinite GG-dimensional.Comment: 19 pages--Corrects earlier version

    On transversally elliptic operators and the quantization of manifolds with ff-structure

    Full text link
    An ff-structure on a manifold MM is an endomorphism field \phi\in\Gamma(M,\End(TM)) such that ϕ3+ϕ=0\phi^3+\phi=0. Any ff-structure ϕ\phi determines an almost CR structure E_{1,0}\subset T_\C M given by the +i+i-eigenbundle of ϕ\phi. Using a compatible metric gg and connection \nabla on MM, we construct an odd first-order differential operator DD, acting on sections of §=ΛE0,1\S=\Lambda E_{0,1}^*, whose principal symbol is of the type considered in arXiv:0810.0338. In the special case of a CR-integrable almost §\S-structure, we show that when \nabla is the generalized Tanaka-Webster connection of Lotta and Pastore, the operator DD is given by D = \sqrt{2}(\dbbar+\dbbar^*), where \dbbar is the tangential Cauchy-Riemann operator. We then describe two "quantizations" of manifolds with ff-structure that reduce to familiar methods in symplectic geometry in the case that ϕ\phi is a compatible almost complex structure, and to the contact quantization defined in \cite{F4} when ϕ\phi comes from a contact metric structure. The first is an index-theoretic approach involving the operator DD; for certain group actions DD will be transversally elliptic, and using the results in arXiv:0810.0338, we can give a Riemann-Roch type formula for its index. The second approach uses an analogue of the polarized sections of a prequantum line bundle, with a CR structure playing the role of a complex polarization.Comment: 31 page

    Orthonormal sequences in L2(Rd)L^2(R^d) and time frequency localization

    Full text link
    We study uncertainty principles for orthonormal bases and sequences in L2(Rd)L^2(\R^d). As in the classical Heisenberg inequality we focus on the product of the dispersions of a function and its Fourier transform. In particular we prove that there is no orthonormal basis for L2(R)L^2(\R) for which the time and frequency means as well as the product of dispersions are uniformly bounded. The problem is related to recent results of J. Benedetto, A. Powell, and Ph. Jaming. Our main tool is a time frequency localization inequality for orthonormal sequences in L2(Rd)L^2(\R^d). It has various other applications.Comment: 18 page

    Remarks on the KLS conjecture and Hardy-type inequalities

    Full text link
    We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary functions on a convex body ΩRn\Omega \subset \mathbb{R}^n, not necessarily vanishing on the boundary Ω\partial \Omega. This reduces the study of the Neumann Poincar\'e constant on Ω\Omega to that of the cone and Lebesgue measures on Ω\partial \Omega; these may be bounded via the curvature of Ω\partial \Omega. A second reduction is obtained to the class of harmonic functions on Ω\Omega. We also study the relation between the Poincar\'e constant of a log-concave measure μ\mu and its associated K. Ball body KμK_\mu. In particular, we obtain a simple proof of a conjecture of Kannan--Lov\'asz--Simonovits for unit-balls of pn\ell^n_p, originally due to Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in final form in GAFA seminar note

    Spectral isolation of naturally reductive metrics on simple Lie groups

    Full text link
    We show that within the class of left-invariant naturally reductive metrics MNat(G)\mathcal{M}_{\operatorname{Nat}}(G) on a compact simple Lie group GG, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result demonstrating that any collection of isospectral compact symmetric spaces must be finite, to appear Math Z. (published online Dec. 2009

    The beat of a fuzzy drum: fuzzy Bessel functions for the disc

    Full text link
    The fuzzy disc is a matrix approximation of the functions on a disc which preserves rotational symmetry. In this paper we introduce a basis for the algebra of functions on the fuzzy disc in terms of the eigenfunctions of a properly defined fuzzy Laplacian. In the commutative limit they tend to the eigenfunctions of the ordinary Laplacian on the disc, i.e. Bessel functions of the first kind, thus deserving the name of fuzzy Bessel functions.Comment: 30 pages, 8 figure
    corecore