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1. INTRODUCTION 

Let p be a measurable complex-valued function on R such that for some 
positive number I], which will be fixed throughout this paper, 

I 
co 

e2vixi [p(x)1 dx < co. (1.1) 
-cc 

Consider the differential operator 

1 = -d*/dx* +p(x) (l-2) 

and the unbounded operator L on L*(lR) defined by Lf = lf on the domain 

Dam(L) = {f E L*(lR) n C’(W): f’ is absolutely continuous 

on every bounded interval, and If E L*(lR)}. 

It is known (cf. Kemp [ 121, Krall [ 131) that L is a closed operator, and its 
adjoint L* is given by 

L*f = Pf on Dom(L*) = {f E L*(lR): fE Dam(L)} 

where I* = -d2/dx2 + p(x). In this paper we shall study the theory of the 
eigenfunction expansion associated to the operator L. The case where p is 
real-valued, i.e., where L is self-adjoint, is classical, and we shall be mainly 
concerned with the phenomena which are peculiar to the case Imp # 0. 

Problems of this sort arise in a variety of situations in physics involving 
energy dissipation. Indeed, our original motivation for this work came from 
the study of dielectric waveguides with heat loss. (In this situation p 
represents a dielectric coefficient, and the equation If = Af [A E C] arises 
from Maxwell’s equations by separation of variables: cf. McKenna [ 161.) 
Operators of the form (1.2), with complex p, have also turned up in recent 
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work of Adler and Moser [ 1 ] and Deift and Trubowitz [7] on inverse 
scattering theory and the KortewegdeVries equation. 

In [9] we studied the analogous problem on a half-line, that is, the eigen- 
function expansion associated to the operator (1.2) on L*(O, co), subject to a 
boundary condition at 0. In both that situation and the present one, it is not 
hard to obtain a formal eigenfunction expansion for any f E L*, but the 
expansion may diverge because of the possible presence of singular points in 
the continuous spectrum-the so-called “spectral singularities.” In both 
cases, the remedy we propose is to introduce a rather subtle convergence 
factor into the expansion formula for f so that the modified expression 
converges. and so that f is obtained as the limit in the L* norm of this 
expression as the convergence factor is made to disappear. We also use this 
technique to construct a bounded functional calculus for L. In broad outline, 
the arguments in this paper are similar to those in [ 91, but in detail they are 
rather different and frequently more involved-partly because the present 
situation is intrinsically more complicated, and partly because we are less 
frequently able to rely on known results. We refer the reader to [9] for a 
fuller discussion of the motivation for the ideas used here, as well as an 
explication of these ideas in a simpler situation. 

Aspects of the spectral theory of the operator L have previously been 
studied by a number of authors, including Benzinger [3], Blashchak [4,5], 
Funtakov [lo], Huige [ 1 I], Kemp 112). Krall [ 13 1, and Stone [ 191. Of these, 
only Blashchak [S ] makes a serious attempt to come to grips with the 
spectral singularities. He obtains an expansion formula which converges in a 
norm weaker than the L2 norm, similar to the formula of Ljance [ 151 for the 
analogous problem on a half-line: he also shows that L is a generalized 
spectra1 operator in the sense of Ljance [ 141 and is a spectra1 operator 
provided there are no spectral singularities. Our present expansion formula 
(Theorem 2) is superior to that of Blashchak in that it converges in the L* 
norm and is more convenient for applications, and the results on the 
spectrality of L follow easily from our functional calculus (Theorem 4). 

Also of interest is the inverse problem of recovering the potential p from 
suitable scattering data of L, which provides a method for constructing L’s 
with prescribed eigenvalues and spectral singularities. This problem has been 
solved by Blashchak [6]. (The reader should beware of mistakes in the 
English version of 161. In particular, on page 791, column 1, line 14, “real” 
should be “nonreal.“) 

We take the work of Kemp [ 12) as our starting point. Kemp expresses his 
results in a way which exhibits the symmetry between I and I*. We find it 
more convenient to express everything in terms of the eigenfunctions of 1. 
However, since these are merely the complex conjugates of the eigen- 
functions of I*, it is a trivial matter to translate one formulation into the 
other. 
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The following notational conventions will be in force for the remainder of 
the paper: (1) If A is a complex number which is not real and positive, fl 
will denote the square root of A with positive imaginary part. (2) The 
Lebesgue spaces Lp(lR) (1 < p < a,) will be denoted simply by 15~. (3) We 
use the classical notation “1.i.m.” for “limit in the L’ norm.” 

2. PRELIMINARIES 

Since the potential p(x) is small near x = *co, for Im s > 0 there is a 
solution y, of /y = s*y which is asymptotic to eisx as .X + +m, and another 
solution yz which is asymptotic to eeiss as x + -a~. These solutions can be 
conveniently expressed in the following form: 

PROPOSITION 1 (Agranovich and Marchenko [ 2 1). Let q be as in (1.1). 
There exist kernels k,(x, t) and k-(x, t) defined, respectively, for 0 < x < 
t < 00 and --co < t <.K < 0 with the following properties: 

(a) k, and k- are absolutely, continuous in each variable. 

(b) For some C > 0, 

Ik,(x, t)] < Ce-‘I”+“, 

Jak,/3x (x, t)l < C(lp((x + t)/2)1 + e-VIX+‘l). 

(cj If Im s > -q, the functions y,(x, s) and y2(x, s) defined, respec- 
tively, for x > 0 and x < 0 bJ> 

y,(x. s) = eisx + 
I 

m k + (x, t) eis’ dt, (2.1) 
x 

y2(x, s) = ecisx + 
I 

x 
k-(x, t) emiS’ df (2.2) 

-02 

satisfy iy = s’y. 

Although formulas (2.1) and (2.2) are valid only for x > 0 and x ,< 0, 
respectively, y1 and y, can, of course, be uniquely continued as solutions of 
[y = szy to -co < x < 00. Proposition 3 below, together with (2.1) and (2.2), 
will provide a means of computing y, and y, on the other half-lines. 

For any differentiable functionsf, g on R, we shall denote their Wronskian 
fg’ -f’g by w(f, g). Since the operator 1 has no first order term, if f and g 
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are solutions of ly = s’v the Wronskian wdf, g) will be constant as a function 
of x. The following Wronskians will appear repeatedly in the sequel: 

U,(s) = W(Y,(*, s>, Y,(*, --s)), 

c’z(s) = 4Y2(*, s), Y2C.r --s)), 

V(s) = )4Y,(., sh 4’2c.9 --s)), 

W(s) = w(y,(.. s), y2(.. s)). 

(I,, CJZ, and Y are defined for (Jm sJ < q, while W is detined for Im s > -q. 
We summarize the facts we shall need about these functions in the following 
proposition. 

PROPOSITION 2. 

(a) rf lIm SI < 4, U,(s) = --U,(s) = -2is. 

(b) For any 6 < q, V(s) is bounded in the strip ( Im s ( < 6. 
(c) For any 6 < q, W(s) + 2is is bounded in the half-plane Im s > -6. 
(d) IfIrm SJ < q, U,(s) U,(s) + V(s) V(-s) - W(s) W(-s) = 0. 

Proof. (a) From (2.1), for fixed s we have 

y,(x, s) = eiYl + o(l)), 

ay,/ax (x. s) = eiSx(is + o(l)) as x+ +co. 

Therefore U,(s) = -2is + o( 1) as x + +a~, and since U,(s) is independent of 
x, U,(s) = -2is. Similarly, U,(s) = 2is. 

(b) From the variation of parameters formula it follows that y, and yZ 
satisfy the integral equations 

y,(x, s) = eisx + 
I m s-‘(sin s(t-x))p(t)y,(C s)&, 
x 

y2(x, s) = eeisx + fx sY’ (sin s(x - t))~(t)y~(t, s) d<. 
- ‘X 

If we substitute these expressions and their derivatives into the definition of 
V(s) and set x = 0, we find that 

v(S) = lam e’%(t) Y ,(t, S> dt + ,f ’ e”“p(() y2(& -s) dt 
--co 

-‘(sin s<)p(t)u,(& s)& x I 
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0 

X _ sc (~0s SO ~(4 VA& -s> dt 
I 

- 
[J 

cm (~0s st) ~(8 Y,& s) dt 
0 1 
’ X s -‘(sin ST) p(t) yz(t, -s) dt . 
-cc I 

But from Proposition I we see that for < > 0, 

I!,,(<, s)l < e-(lms)l + c tc ,-v(l+Oe-(lms)t dt < cle-(Ims)l 

and likewise for 5 < 0, 

The boundedness of V(s) for 1 Im s ( ,< 6 < q then follows from these estimates 
together with (1.1). 

(c) is derived in the same way as (b). 

(d) follows by a simple calculation from the definitions of the 
Wronskians. 

From Proposition 2(a) it follows that for ) Im sJ < q, s # 0, each of the 
pairs ~,(a, s). J,(., -s) and pz(., s), JJ~(., -s) is a basis for the solutions of 
!V = s’J~. It is easy to find the expressions for members of one pair as linear 
combinations of members of the other. Here is the result. 

PROPOSITION 3. IfIImsI <II. s#O, 

V(s) y,(x, s) = - W(s) 
U*(s) 4)2(X, s) - - U,(s) Y*(X, -s> 

V(s) W(s) = x y2(x, s) - T )‘*(X, -s), 

(2.3) 

- V(4) 
Y*(X, s) = u,(s) W(s) Y,(X, s) + - 

U,(s) Ylk, -s) 

V-s) W(s) (2.4) 
= x y,(x, s) -T y,(x, -s>. 

At this point we identify the spectrum of the Hilbert space operator L, 
which we shall denote by spec(L). 
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PROPOSITION 4 (Kemp [ 12)). The discrete spectrum of L consists of 
those numbers A = s2 such that Im s > 0 and W(s) = 0, and the eigen- 
.functions of L with eigenualue s’ are the scalar multiples of y , (a, s) (or 
equivalently of y2(., s). since the condition W(s) = 0 means that y,(., s) and 
!v2( ., s) are proportional). The continuous spectrum of L consists of the half- 
line ]O, co), and the residual spectrum of L is empty. 

We note that W is an analytic function in the half-plane Im s > -q. 
Moreover. from Proposition 2(c) it follows that W(s) # 0 when Is( is large 
and Im s > 0. Therefore, W has only finitely many zeros in the half-plane 
Im s > 0. We denote them by s, ,..., s ,,,, and we denote their multiplicities by 
a I,... 3 a,,,. We further set A.,,, = sfn for 1 < m <IV, so that 

spec(L) = (A,,..., AM} U [0, co). 

If the multiplicity a,,, of s,,, is greater than 1, we must consider not only 
the eigenspace {c~,(=, s,): c E C } but the “generalized eigenspace” consisting 
of the linear span of the functions 

(d/dllkYj(., &)I.\ =:.i, (O<k<a,- l,l<j<2). 

For convenience of notation, for A @ [0, co) we set 

yj(X, 1) = Yj(X, fl), rjk’(x. A) = (d/d/I)kYj(x, A). 

(Recall that Im fl> 0 by convention.) 

PROPOSITION 5. (a) The linear span of { Y’,“‘(., A,): 0 < k ,< a,,, - 1 } is 
the same as the linear span of ( rzk’(., A,,,): 0 < k < a, - 1). 

(b) The functions qk)( ., A,,,) (0 < k Q u, - 1, 1 < m < M, 1 <j Q 2} 
are all in L2. 

(c) (1 -A,) q”‘(., A,) = kqk-‘)(., A,,,) for all j, k, m. 

Proof: (a) Let Z( ., A) be a solution of 1Z = AZ, defined for 1 in some 
(perhaps disconnected) neighborhood U of (A, ,..., A,}, which depends 
analytically on 1 and is linearly independent of Y,(., A) in (1. Then YZ(., 1) is 
a linear combination of Yr(., A) and Z(., A) in U; more precisely, as in 
Proposition 3 we have 

y 
2 
(A) = [w(Y*, aI@) Y,b A) + mm Z(x7 A> 

[M’(YI 9 Z)l@) * (2.5) 

Since W(dA) vanishes to order a, at A = A,, from (2.5) it is clear that 
u’2k’(., ,I,) is a linear combination of Y’,OJ(., A,),..., ylk)(., A,) for k < a,,, . 
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(b) From (2.1) and (2.2) it is easy to see that for any k > 0, 
V,k)(~. A,) decay s exponentially as x -+ +co. whereas PZk)(x, 1,) decays 
exponentially as x + -co. Thus by (a), if k < a,,,, Y’,“‘(x, 1,) and V*“(x, ;I,) 
decay exponentially as x + foe, and in particular these functions are in L2. 

(c) Note that (/ - ;I,) Y,(., A,,,) = (A - 1,) Y,(., A). On both sides of 
this equation, expand Yj(., A) in its Taylor series about 1 = A,,, ; comparison 
of coefficients yields the desired result. 

The function W may also have finitely many zeros on the real axis; if so, 
the squares of these zeros, which lie in the continuous spectrum of L, are the 
spectral singularities of L. Actually. it is more appropriate to consider the 
zeros of W(s)/s (that is, 0 should be counted as a spectral singularity only if 
W(0) = W’(0) = 0). Thus, we denote the real zeros of W(s)/s by t, ,..., I, and 
their multiplicities by p,,..., p,,,. Also we denote the real zeros of 
W(s) W(-s)/s’ by u, ,..., u,v. and their multiplicities by y, ,..., Y,, ,. We note 
that 

(u , ,..., &f) = (t ,,..., fN} u (-4 ,,..., -l,}, 

and that if u,. = ft,, then Y,,, >/I,, with equality if and only if 
W( Tt,)/(If t,,) # 0. The meaning of all these quantities will become clearer 
later on; in particular, cf. the remark following the proof of Theorem 2. 

Next. we introduce some useful linear operators on L2. 

(1) .f will denote the Fourier transform: 

,Xf = 1.i.m. 
I 

’ 
z-cc -I 

f(x) exp[ix(.)] dx. 

The adjoint of 3 is then given by F*f(s) =3f(--s). 

(2) If d is a measurable complex-valued function on R, d(S) will 
denote the operation of multiplication by 6: 

If # E L”O then 4(S) is a bounded operator on L2. If d & Lw, we may regard 
4(S) either as an unbounded operator on L2 with domain {fE L2: $f E L’} 
or as a mapping from all of L2 to the space of a.e.-defined measurable 
functions on R, whichever is appropriate. We note the following corollary of 
the Lebesgue dominated convergence theorem, which we shall use without 
comment later on: If {I$,,} is a bounded sequence in L”O and 4, + 4 a.e., then 
q+,(S) -+ g(S) strongly. 

(3) We set P, =x ,O,a,(S) and P- =x(-~,JS), where xE denotes the 
characteristic function of E. Thus P, and P- are the canonical projections 
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of L* onto the subspaces of functions supported on the positive and negative 
half-lines. 

(4) We combine the kernels k, and k- of Proposition 1 into a single 
kernel k as follows: 

k+(x, 0 ifO<x<t<a, 

k(x, t) = k-(x, t) if -co < t<x<O, 

0 otherwise. 

We then define integral operators K and K’ by 

Oci Kf(t) = 
I 

k(x, Of(x) d-r, K’f(x) = IX 4x, Of(t) dt. 
-m ~- m 

We note that because of the estimates on k, in Proposition 1, we have 

5 SC 
i I 

) k(x, t)j2dx dt < 03. 
-cc --5 

so that K and K’ are Hilbert-Schmidt operators on L’. 

PROPOSITION 6. I + K is invertible. In fact, there is a kernel c(x, t) 
supported in the set where --co < t < x < 0 or 0 <x < t < 03 and satisfying 
(f;(x, t)[ < C’e-vl”f’f such that (I + K)-’ = I + I?, where Kf(t) = 
.I?, f;(x, t>f(x) dx. 

Proof. Notice that for any f E L2 

P+KfCO =(‘k+k 0.f~~) dx if t > 0, =0 if t < 0. 
0 

Hence P+K is a Volterra integral operator with L* kernel. By a well-known 
argument (cf. Tricomi [20]), the estimate Ik+(x, t)] < Ce-“‘XCf’ implies that. 
the iterated kernels kt defined recursively by 

k:=k,,k:(x,t)=j-fk+(x,~)k:-1(5,t)dT (O<x<t< co) 
x 

satisfy 

Ik:(x, 01 < =” 
(2?7)“-‘&zTy 

e-?f’X+f’ (n 2 2h 
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so that the series XF (-1)%:(x, t) converges absolutely and its sum )G+(x, t) 
satisfies I&+(x, t)\ < C’e- q(x+r). Moreover, the operator I?+ defined by 

R+fW = jt R, (x, t)f(x) d-x if I > 0, =0 if t < 0, 
0 

satisfies I + I?+ = (I + P+K)- I. Likewise, (I + P-K)-’ = I + K-m where I?_ 
has similar properties. But then, since 

I + K = Z + (P, + P-)K + KP+P-K = (I + P+K)(Z + P-K), 

I + K is invertible and 

This completes the proof. 
IffE L*, the “Fourier data” off with respect to the operator L consist of 

the functions ~‘,f; y2f on IR defined by 

4'jf(s) = 
I 

O" f(x) Yj(wul s, dx 
- co 

together with the numbers 

Yjky-(&J = I” f(x) Yjk’(x. A,) d-x (0 < k < a, - 1, 1 < m < M). (2.7) 
- CL, 

Both (2.6) and (2.7) require further comment. We first discuss (2.7). 
By Proposition 5(b), the integrals in (2.7) all converge absolutely. If we 

were to replace A, in (2.7) by some other A E @, these integrals would (in 
general) diverge, since then ?“‘(a, A) & L*. Nonetheless, it is convenient to 
treat the numbers Yj’)f(,I,) as if they were the derivatives at A,,, of an 
analytic function Y,f(A). To be more specific, these quantities will typically 
occur in expressions of the form 

[ti ' Yjfl'k'(Am) (O<k<a,- 1) P-8) 

where 4 is an analytic function in some neighborhood of A,,,, and (2.8). by 
definition, denotes 

(See also the discussion of “functions on the spectrum of L" in Section 4.) 
We now turn to (2.6). Ifs E R, the functions yj(., s) are not in L*, so the 
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integral in (2.6) will usually not converge absolutely. However, iffE L2 has 
compact support, 

5 
K f(x)y,(x, a) dx =.FP+(Z + K)f, 

0 

I 
’ f(x)y2(x, a) dx = Y-*Pm(I + K)f: 
--oc 

(This follows easily from (2.l), (2.2) and the Fubini theorem.) Hence, in 
view of (2.3) and (2.4), 

The expressions on the right of (2.9) and (2.10) make sense for any fE Lz 
and define jt,f and JJ almost everywhere as measurable functions on R. 
Hence we take (2.9) and (2.10) as the definition of y,ffor arbitraryfE L’. 

By Proposition 2(b, c), the functions V(s)/s and W(s)/s are bounded on R 
except perhaps near s = 0. so Ij,Jand J’Jare square-integrable on R\(-s, E) 
for any E > 0. Moreover, notice that V(0) = W(O), so that 1 V(s) - W(s)/ = 
O(lsl) and I V(-s) - W)l= fWsl) as s + 0. It follows that vlf and ~1~ fare 
in Lz provided that either W(0) = 0 or the functions g, =3+-P+ (I + K) f are 
differentiable at 0. since the latter case 

l.Ff’,V + Wf(s) -x*P,U + K)f(s)l = I g,(s) - g,(-s)l = o(lsl). 

Similar considerations lead to the following result, which will be used 
later. 

PROPOSITION 7. Zf g E L I, the integrals j? g(s) yj(x, s) ds (j = 1, 2) 
concerge absolutely. If g E L2 and S-’ W(S) P, g E L2 (which implies that 
S-‘V(fS) P, gE L’), the L2 limits 

g(S) Yj( ‘3 S) ds (j= 1.2) 

exist. and 

0, = (I + K’) P+jr + P-F* 

U-S) --P+.F*lgq P+g. 2iS 
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3. EXPANSION THEOREMS 

We first prove an expansion formula which requires no convergence 
factors but is valid only for functions in a certain dense subspace X of L*. 

Let s” be the set of all g E L2 with compact support such that FP+ g and 
.FP- g vanish to order (at least) Y,, at u,, 1 < n ,< N’. (The latter condition 
makes sense because Fourier transforms of functions with compact support 
are restrictions to the real line of entire analytic functions.) We note that 
since the set {u, ,..., u,~, 1 is symmetric about zero, and since I),, = yn, when 
u, = +4”‘, the condition g E 3 implies that .F*P+ g and .F*P_ g also 
vanish to order y, at u,, 1 < n < N’. We then define 

X=(fEL2:(Z+K)j-EZ}. 

PROPOSITION 8. X is dense in L*. 

Proof. By Proposition 6, it suffices to show that 3” is dense in L’. We 
shall show that if Q E L’ is orthogonal to 3” then 4 = 0. 

First, notice that if g E L* vanishes outside the interval [O, a] (a > 0), then 
gE3 if and only if 

I 

a 
g(x) ,xJeiunx d.x = 0 (O,<j,<y,- 1, 1 <n<N’) 

0 

Thus if Q is orthogonal to Z, for x E [0, a] we must have 

(3.1) 

for some constants cj,. Since the functions x e j iU*X are linearly independent on 
every interval (being independent solutions of 

the coefficients cjn must be independent of a, so the representation (3.1) of 4 
holds on [0, co). But no function of the form (3.1) is in L2(0, co) except the 
zero function, so 4 = 0 on [0, co). Likewise $ = 0 on (-co, 01. 

PROPOSITION 9. IffEX, then 

(a) If(x)1 = O(e-gfX’) as (xl + co; in particular, f E L’; 

(b) the functions y,f; y2 f extend analytica& to rhe strip (Im s( < v 
and vanish to order y, at u,, 1 < n < N’. 
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ProoJ Since f = (I + K)-‘g where g has compact support, (a) follows 
from Proposition 6. Moreover, since FP, g and F*P. g are entire 
functions, (b) follows from formulas (2.9) and (2.10). (As we remarked 
before, the apparent singularity at s = 0 in these formulas is removable.) 

The first step in deriving the expansion theorem is to study the resolvent 
operator Rz = (L - zZ)-’ for z & spec(l). For Im s > -q and x, r E iR we set 

h(x, 6 s) = 
I 
Y,(X, S)Y2G s)/W) if <<x, 

Y,(& S)Y*(-G SW(S) if <ax, 

and for z @ spec(l) we set 

r(x, t; z) = 0, <; &I (Im \/; > 0). 

PROPOSITION 10 (Kemp [ 121). ff z & spec(l), R, is given by 

R,f(x) = jm 4x, 5; z)./‘(t) &. 
-cc 

PROPOSITION 11 (Kemp [ 121). Zf ] Im SJ < rl, 

sh(x, <; s) - sh(x, (; -s) = 
2is’ 

(- y .(x, S)Yj(& -s). 
W(s) W(-s) ,r, ’ 

PROPOSITION 12 (Kemp [ 121). If z @i spec(l) and 0 < E < Im dz, 
E < min{Im s, : 1 ,< m < M), then 

sh(x, 5; s) 
s2-z ds 

r(x, 6,~) - e Res,,,m L-z . 
m=l 

(3.2~ 

We wish to rewrite the right-hand side of (3.2) in a more convenient form. 
First, 

r(x, t; 1) 

t 

Res _ Y,(x,~) y,(r,n) 
*-lm (A - 2) W(G) 

ifT<x, 
Res _ 

A-&n Aez = Res Y,G A) Y*(xt A) _ 
A-hn (A -z) W(fi) 

if c 2 x. 

But if we use the expression (2.5) for Yz(x, A), we see that 

y&G A) Y2(t;, A) - Y,(<, A) Y,(x, A) = Yl(X, 2) ZG A) - Y,(C, 1) Z(x, A) 
(A-z) w/a (2 - z)[W,, al(n) ’ 
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which is analytic at A = A,. Hence 

Res _ 4x5 r; A) = Res Yl(XT A) Y*G1) 1-43 l-z _ 
A-Am (A - 2) W(\l;i) 

for all x, <. Thus, if we set 

B,,,(l) = 
- (/I - &p 

(a, - l)! W(G) ’ 

the usual formula for residues yields 

Next, we tackle the integral in (3.2). Let 6 be a positive number such that 
6<q, 6<Im&, 6<min{Ims ,,,: l<m<M), and 6<fmin(lu,-u,,,l: 
1 < n < n’ <N’}. Let p8 be the contour consisting of the real line, oriented 
from -co to +co, with the intervals Js - u,I < 6 replaced by the semicircles 
of radius 6 in the upper half-plane about the points u,, 1 < n < IV’. Then 
clearly 

Let us suppose for the moment that 0 G {u,,..., uN.). Let f; be the contour 
consisting of the real line, oriented from --oo to + co , with the intervals 
1 s - u,, 1 < 6 (1 < n < N’) replaced by the semicircles of radius 6 about u, in 
the upper or lower half-plane according as U, > 0 or U, < 0. Then 

1 
z I 

SW t-i s) ds = 1 

ri s2-z 5 
sh(x, r; s) 

71i rb’ s2 -z ds + 2 x Wcun 
sh(x, r; s) 

u,<o s2-z - 
WU,) =o 

The contour rz is symmetric about the origin; hence, if we denote by r, the 
portion of rg lying in the right half-plane, by Proposition 11, we have 

1 
Iri I 

wx, 6 s) 
r; 

sz-z ds=& I 
SW, r; s) - sh(x, <; -s) ds 

=I r& s2 --I 

2 4 
I 

S2J7j(x, s, .YjCx, -s) 
=- 

7c r6 ,T, (s2 - z) W(s) W(-s) ds* 

On the other hand, we can evaluate the residues at s = u, in the same way as 
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we evaluated the residues in (3.2), ending up with a formila similar to (3.3). 
All we need is that 

where superscripts (j) and (k) denote differentiation with respect to s. 
Combining these formulas with (3.3), we have 

;'"- 1 

+ \‘ “ Cjkn(Z)~Y'(XT u,) y:k'(c~ u,). (3.4) 
W(u,)=O j.ZO 

u,<o 

If 0 E (U,,..., u,v,), (3.4) remains valid provided that two modifications are 
made. First, Ta should be understood to be the half-line [6, co) with the 
intervals 1s - u, 1 < 6 (u, > 0) replaced by the semicircles of radius 6 in the 
upper half-plane about the points u,. Second, an extra term must be added, 
namely, 

1 
I 

N-b if; s) 
7 
m c, s2-z ds 

where C, is the semicircle Is( = 6, Im s > 0 (oriented from left to right). If we 
denote by CL the lower semicircle 1 s/ = 6, Im s < 0, oriented from left to 
right, and by y the multiplicity associated to 0 E (u,,..., u,$,,), we obtain as 
above : 

1 
( 

sw, r; s) - Nx, r; -s> ds + Res sh(x, & s) =- 
27ti c6 (s2 - z) 5-O s2 -z 

2 1 . 
zz- 

i 

S2J'j(x, s, J'j(t? -S) 

7c Cg ,&, (s2 - z) W(s) W(-s) ds 

+ 2: Cjk(Z) yyyx, 0) y:k’(<, 0). 
i.k=O 
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PROPOSITION 13. IffE X and z 6E spec(L), 

+ : I((.)-z)-’ . B, . y2”f . Yl(Xl *)I (-‘y&J, (3.5) 
m=1 

where the integral converges absolutely for all x E R. 

Proof. We combine Proposition 10 with formula (3.4) (with appropriate 
modifications if 0 E (u, ,..., 1.4,~)). Since f E L’ and 

I a’ Is’-z(-‘ds < co, sup 
s*yj(x, s) JJj((, -s) 

- ;xI x.IEl~,sEr~ W(s) q-s) < O3 

(by Propositions 1, 2(c), and 3), we can interchange the order of integration 
of obtain 

+ 1 [((.)-z)-’ . B, . Y,f . Yl(x, .)](am-‘)(&J 
m=l 

y,- I 
+!I - ” Cjkn(Z)Yf) Cx* un)(Y2f )‘k’(Un)* 

u.<o j.k=O 
W(U,) =o 

But by Proposition 9, J)f (s), and hence also yj f (-s), vanishes to order Y,, at 
s=u,, so all terms in the last sum vanish and we can let 6 + 0 to transform 
the integral over Ts to an integral over [0, co). The absolute convergence of 
this integral is clear since c Is* - z I-’ ds < co and the product of the 
remaining factors in the integrand is bounded. If 0 E {u,,..., u,,}, the extra 
terms also vanish as 6 -+ 0, so we are done. 

We can now state the expansion theorem for functions in X. Iff E X, then 
by Proposition 7 and 9, for 0 < r < co the integral 

* T,f (x) = +Jl K- s*Yjf tms) Yj(x3 s, 

o jr, W(s) W(-s) ds 

converges absolutely, and the limit 

Tf = 1.j.z. Tsf 
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exists. Also, we set 

‘M 
Bf(x) = 1 [B, * Y*f . Y,(x, pi-“&). 

m= I 
(3.6) 

THEOREM 1. IffEXthenf=Tf+BJ 

In our proof of this result we have borrowed some ideas from Ljance [ 141. 
First, we need two lemmas. 

LEMMA 1. If g E L2 and z @ spec(L), then for 1 <j ,< 2, 0 < k < a,,, - 1, 
1 < m ,< M, Jj(Rz g)(s) =J>g(s)/(s’ - Z) and qk’(R, g)(l,) = [((e) - z)-’ . 
yj gl’“‘tAm>* 

Proof Let h = R, g. If g has compact support, it is clear from 
Proposition 10 and the definition of T(X, {; z) that h decays exponentially at 
fco. Thus 

Yjds)=Im O- z> h(x)y,?,(x, s) dx 
-cc 

= 
I 

cc h(X)(l - Z)J>(X, S) d-Y = (s’ - t) yjh(S)* 
-co 

The same relation then holds for any g E L2 by a simple limiting argument 
using (2.9) and (2.10). Likewise, by Proposition 5(c) we have 

~“‘g(l,) = (I, - z) YJk’h(13,,J + kYJk-“h(&,,). 

On solving recursively for Yjk’h(Am), we obtain the desired result. 

LEMMA 2. If f E X and h E L2, then 

ProoJ If W(0) = 0, the map h --) yjh is bounded on L2, and 

by Propositions 2(c), 9(b). If W(0) # 0, the map 
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is bounded on L2, and 

wst + 1) W(S) ),q-S) Y,f(-(4) E L2* 
In either case, for fixed f E X, the integral on the right of (3.7) defines a 
bounded linear functional on h E L2. The same is clearly true of the integral 
on the left of (3.7), so it suffices to show that the two integrals are equal 
when h lies in the dense subspace L2 n L’. In this case, however, we have 

jm Tf(x) h(x) dx = i;z ,” T,f(x) h(x) dx 
-cc CL 

00 

I I 

s2 
= limr+ 

2~ S2yjf(-s) .Vj(xY S) 
-= ,T,>, W(s) W-s) 

h(x) ds dx, 

and since J~~(x, s) is bounded on R x R, by Proposition 9(b) we can 
interchange the order of integration to obtain (3.7). 

Proof of Theorem 1. First, from the definition of r it is clear that 
r(x, {; z) = r(& x; z). This implies that for any fi g E L2, 

Ii*’ Ax)R,g(x)dx=l= R,f(x)g(x)dx. 
-cc -x 

(3-g) 

It also implies that we can interchange x and < in (3.4). and hence that we 
can replace yjf(-s)~‘,(.u, S) by yj(x, -s)Y~~(s) and Y2f . Y,(x, a) by 
Y,f . Y2(x, a) in (3.5). 

Now, fix z I$ spec(L), and suppose f E X and g E X. By the preceding 
remarks, 

+m 
M 

I 
f(x) F’ [((m) -z)-’ . B, . Y, g. Y,(x, .)](am-‘)(A,) dx 

-cc El 

2 + =- 
71 I 

s2Yj Lds) YjfCus) ds 
0 ,r, (s2 - 2) W(s) Iv-s) 

+ c [(.)-z)~‘.B, . Y, g - Y2f](‘)m-‘)&). 
rn=l 
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(The interchange of integrals is easily justified since f E L’.) On the other 
hand, by Lemmas 1 and 2, 

and 

s m Bf(x)RL g(x) dx= f I((.) - z)-’ . B, . Y, g . Yzf](*m-“(&,,). 
-cc m=l 

Hence, by (3.8), 

irn R;f@)g(x) d-v = IX f(x) RL g(x) d,u = IX u(x) RL g(x) d.y 
--Ix - JI, x, 

+ lw Bf(x)R,g(x)d-x=j= R;(Tf+Bf)(x)g(x)dx. 
- cx -a 

Since X is dense in L2, it follows that R,f = R,(Tf + Bf ), and since R, is 
injective, f = Tf + BJ The proof is complete. 

We now show how to modify the expansion formula so that it is valid for 
all f E L2. First, we recall some definitions. 

The Hardy space H’ is the set of all analytic functions F on the upper 
half-plane such that 

sup s 
m IF(s + it)l’ ds < 00. 

I>0 -K 

Functions in Hz possess boundary values almost everywhere on the real line, 
which define elements of L2. Thus we can identify HZ with a subspace of L2; 
under this identification, the Paley-Wiener characterization of HZ [ 171 states 
that 

HZ =29’+(L’) =3*P_(L2). 

We denote by Aa the set of bounded analytic functions on the upper half- 
plane which extend analytically to some neighborhood of the real axis, and 
we note that if FE H2 and G E Aa, then FG E H2. 

As in [9], an approximating family for L is a collection (q%t}c>O of 
functions in HZ n A 5 with the following properties: 

(a) suPC>o SUPIrns>O IdE(S>l < 1, 
(b) tie(s) vanishes to order yn at s = u,, 1 < n < N’. 

(c) lim,+, $,(s) = 1 for almost every s E I?. 
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Given an approximating family ($,} for L, we define the functions J$(x, s) 
and y;(x, s) for x, s E R by 

4r(S)4’,(x, s) if x > 0, 

(2is)-‘[$,(s) V(s).Y*(x, s) 
- 4,(--s) W) Y,(X? -s)l if x < 0, 

4,(s) 4’& s) if .X < 0, 
(2is)-‘[f$,(s) V(-s)y,(x, s) 

-4,(--s) W)J’,(Xv -s)l if x > 0. 

Notice that J~;(x, s) and J$(x, s) are solutions of /y = S*JJ for x > 0 and x < 0, 
but are usually discontinuous at x = 0. Moreover, as E + 0, J$(x, s) -+ yj(x, s) 
uniformly in X, for almost every s, by Proposition 3. 

Iff E L2 has compact support, we set 

m yy-(s) = I f(x) J$(x, s) dx (j= 1,2). 
-m 

As before, we extend this definition to allf E L’ by setting 

.,Jg- = #$QFP+ 

_ $A-S) W(S) 
2iS FP- (Z+K)f 

I 

JY” = $Jsy*P- + 
[ 

h(S) V(-S) Fp 
2iS t 

_ 4,(-S) WS) 
2iS 

X*P+ (I + K)J 1 

(3.9) 

What actually occurs in the expansion formula is not yjf(s) but JJ~~( - s): 
this reflection in the origin has the effect of interchanging T and F* and 
replacing S by -S in these formulas. 

Here, then, is our main theorem. 

THEOREM 2. Zf f E L2, x E R, and E > 0, the integral 
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converges absolutely. Moreover, Tf E L’and 

f = ‘.t:fs. Tf + Bf 

where Bf is defined by (3.6). 

(3.11) 

Proof: The proof is similar to the proof of Theorem 1 in [9], where some 
of the arguments are given in greater detail. The idea is as follows. One 
shows that the operators r are bounded on L2 and that I.i.m.,, Tff = Tffor 
all f E X. By Theorem 1. then, (3.11) is true for f E X. Next one shows that 
the operators 7‘ are uniformly bounded and converge strongly to a bounded 
operator as E -+ 0. Since X is dense in L2, a simple limiting argument then 
shows that (3.11) is true for all f E L2. 

It is easily verified that because of the properties of the approximating 
family ($,), not only does the integral defining pflx) converge absolutely, 
but so do the integrals of the individual terms 

I 
Oc S2Yjf(-s) Yj(x, s, ds 

W(s) W-s) 
(j= 1, 2). 

0 

(It is here that the condition #, E H’ is used; details are left to the reader.) 
We now perform some computations with these integrals. First, using (3.9) 
and (3.10) and the remarks following them together with Proposition 7, we 
find that 

where 

A’= 

We multiply this all out, using the fact that P, commutes with multiplication 
operators, and collect the terms beginning with P, and P-, thus: 

A’= P,A: + P-A’ 
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where 

A: =.3-P+ #J-s) s2 
W(S) W-S) 

F*p+ - yp #d-S) u-w FP_ 
+ 2iW(S) W(-S)’ 

+,_7p #G)S yep + FP 
+ 2iW(S) - . 

4,(-S) w)Qp 
+ ZiW(S) W(-S) - 

+.?rp 
+ 

@A-S) w) U-S) ,~F*p -Fp 4,(S) V-S) rp 
4W(S) W(-S) + + 4W(S) -1 

-,F*p 4J-9s <Fp 
+ ZiW(-S) 

-F*p @A-S) V(S) ;r*p 
+ 4W(-S) t 

+ .F-*p+ Al+J + 

and A? is a similarly unattractive sum of nine terms. However, things are 
not really so bad. First, notice that the second and fourth terms on the right 
of (3.13) cancel out. Moreover, if we introduce the operator J defined by 
Jg(s) = g(-s), and note that 

J2 = I, JF=FJ=.X*, JT” = Sr*J = 7, 

P,J=JP.-, P-J = JP, , 

and Jw(S) = w(--S)J for any function V, we see that the seventh term on the 
right of (3.13) is equal to 

-F*P,J* ;&s’s”, xp = xp - @@)’ x*p 
- 2iW(S) --) 

so that the third and seventh terms add up to 

,F ~cw y*p 
2iW(S) -~ 

Likewise, the sixth and eigth terms add up to 

-jT B,(S) V-S) Fp 

4 W(S) +’ 

Finallt, by Proposition 2(a), (d) the sum of the first and fifth terms is 

,Jrp 
+ 

#A-S) y*p 
4 +’ 
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which can be combined as above with the ninth term to yield 

In short, 

A similar calculation shows that 

(3.14) 

(3.15) 

Some comments are in order at this point. In the first place, products and 
quotients of multiplication operators by functions are to be understood as 
multiplication by the corresponding product or quotient of functions: for 
example. 

@,(W 4 @Is 
2iW(S) = multiplication by -L-- 

ZiW(s) * 

The reason for this bit of pedantry is that the entire product or quotient may 
be bounded even when the individual factors are not. Indeed, the whole point 
of introducing the #e’s as we have done is that every individual term in the 
expression (3.13) for A: and in the subsequent calculations is a bounded 
operator on L2, and likewise for A’_. This is easily verified by using the 
properties of the approximating family {#,}, Proposition Z(b), (c), and the 
fact that V(0) = W(0). Hence we can combine terms fearlessly to arrive at 
the simplified expressions (3.14) and (3.15). Moreover, although the original 
formula (3.12) for A’ contains some unbounded multiplication operators, it 
certainly displays A’ as a densely defined operator on L2 which agrees with 
the bounded operator P+A; + P-A’ on its domain of definition. Therefore 
A’, and hence also Ir, is bounded. 

Next, suppose f E X. We can then perform the same calculations as 
above, but without the 4’s, to see that 

Tf=;(I+K’)[P+A+ +P-A-](I+K)f 
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where A + and A- are given by (3.14) and (3.15) with 4,(S) replaced by I. 
Here the nice properties of the space X replace those of the functions 4, in 
the verification that the terms in this equation and in the calculations leading 
to it all make sense. Since g,(S) + Z strongly as E + 0, it follows that 

1.f.y. T’f = Tf for f E X. 

Finally, we shall use (3.14) and (3.15) to show that the operators P+A; 
and P-A’ are bounded uniformly in E and converge strongly to bounded 
operators on L2 as E -+ 0. The same is then true of the operators F, which is 
what we need to finish the proof. 

Let v,(s) be the sum of the singular parts of the Laurent expansions of the 
function s/2iW(s) about its poles on the real axis. w, is thus a rational 
function which vanishes at infinity, such that w,(s) - s/2iW(s) is bounded on 
IFi and w,$, E A4 for E > 0. Likewise, let wz(s) (resp. V/~(S)) be the sum of 
the singular parts of the Laurent expansions of the functionV(-s)/4W(s) 
(resp. V(s)/4W(s)) about its poles on the real axis. As in [9], the essential 
point is that the operators 

are all identically zero. This follows from the Paley-Wiener theorem: if 
g E L2. then (for example) 3*P- g E HZ, so also 

h = y/,(S) (6,(S)F*P- g E H’. 

But then Y/I is supported on (-co, 01, so P+.Fh = 0. Likewise for the other 
operators. It therefore follows easily that P+A: and P-A’_ are bounded 
uniformly in E and converge strongly as E -+ 0 to 

ZP+ fP+3 
[ 

S 
2i W(S) -w,(S) sr*p 1 

-P+.P $$+y,(S)]FP+ 
[ 

and 

+P- +P..x* 
[ 

S 
2i W(S) -v/,(S) xp, 1 

- p-cF* [ V(S) ___ - w,(S) sr*p-, 
4 W(S) I 
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respectively. (We have used the fact that .FF* =Y*X = 2nZ.) This 
completes the proof. 

Remark. Although the expansion formula (3.11) involves the 
singularities of s*/W(s) I+‘(-s), in (3.14) and (3.15) only the singularities of 
s/W(s) appear (since V(0) = W(0)). Thus, it is necessary to assume that 
i,(s) vanishes to order yn at s = u,, 1 < n < N’, in order to arrive at (3.14) 
and (3.15); but as far as the boundedness and convergence as E + 0 of these 
operators is concerned, the weaker condition that ),(s) should vanish to 
order /I,, at s = t,,, 1 < n ,< N, would sufftce. It is also the points t, and their 
multiplicities /I, that will be significant in the construction of a functional 
calculus in the next section. 

As a corollary of Theorem 2, we obtain the “Parseval equation” 
associated to the operator L. 

THEOREM 3. For any J g E L2, 

2, S2Yv-WY, g(s) I” f(x)&> dx = $j +I; ,;, $@) @qws) ds 
- cr3 

+ 5 [B, * YJ . Y* g](“m-‘)(J,). 
l?l=l 

ProoJ By Theorem 2 we have 

I” f(x) g(x) dx = l)J ,_s, m-(-~) g(x) dx + j-a &I-~~) g(x) dx. --03 -cc 
But 

and 

I O” B.(x)g(x) dx = e [B, * Y,f * Y, gp- “(A,). 
--cc El 

The second of these equations is obvious, while the first is proved in the 
same way as (3.7). 

4. FUNCTIONAL CALCULUS 

As a first step in the development of a functional calculus for L, we 
consider rational functions of L, which can be treated in an elementary way. 
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Let 2 be the algebra of all rational functions on C which vanish at infinity 
and have no poles on spec(l), and let .JS(Lz) be the Banach algebra of all 
bounded operators on L2 (with the norm topology). By the partial fraction 
decomposition, each Q E 9 can be written uniquely in the form 

where z ,,..., zK are the poles of Q 

-? c,k(A - z,)-j 
,T 

(4.1) 

and ~4, ,..., pK are their multiplicities. If 
Q E 9 is given by (4.1), we define Q*(L) E 9(LL) by 

where R, = (L - zI)-I. 

PROPOSITION 14. The mapping Q--f Q*(L) is an algebra homomorphism 
from 22 to 9(L*). 

This result is not hard to verify directly, the only nontrivial point being 
multiplicativity. Alternatively, one may invoke the analytic functional 
calculus for closed operators (cf. Dunford and Schwartz [8]). 

PROPOSITION 15. Zf Q E f andf E X, then 

ProoJ It suffices to verify this when Q is of the form Q(2) = (A- z)-~, 
so that Q,(L) = Ri. However, we have the well-known identity 

so the result follows by differentiating the formula (3.5) for R,f(x) (k - 1) 
times with respect to z, noting that the differentiated integrals are again 
absolutely convergent. 

We now proceed to the main theme of this section. As in [9], we define a 
function on the spectrum of L to be a mapping which assigns to each 
A E [0, co) a complex number G(J) and to each eigenvalue A,,, of L an a,- 
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tuple of complex numbers (G(o)(&,&, G(am-‘))(&,,)), such that the function 
A-+ G(1) on [0, co) is measurable. We consider two functions G, H on the 
spectrum of L to be equal if G(A) = H(A) for almost every 1 E [0, co) and 
G”‘(L ) = H”‘(l ) f or all j, m. The set of functions on the spectrum of L 
formsma commutkive algebra, with the vector operations defined pointwise 
and multiplication defined by 

G. H(l)=G(A)H(l) for AE [O,a3), 

(G . H)U’(l ) = + 
m 

k=O 

If 4 is an analytic function on a neighborhood of spec(L) in C (for example, 
if I$ E .3), @ canonically determines a function G, on the spectrum of L by 
the equations 

G,(A) = #(J) for J.E [0, co), 

G;‘()i,) = (d@/dl’)(&,,). 

We shall always identify G, with 4. In general, functions G on the spectrum 
of L are subject to the convention introduced earlier for the quantities 
I’$@,,,): the numbers Go’(J.,) are to be treated as if they were the 
derivatives of an analytic function G(A) at A,,,. 

For any function G on the spectrum of L, we define the function G on R 
by G(S) = G(s2). 

If so E R and k is a positive integer, we denote by Dk(so) the set of all 
functions 4: R + C for which there exist complex constants a, ,..., a&, such 
that 

for s near so. 

Clearly, if 4 is k - 1 times continuously differentiable near so and $(k-‘) 
satisfies a Lipschitz condition at so then 4 E Dk(so). Moreover, for any 
Q E Dk(so) the numbers a, ,..., ak-, are obviously uniquely determined. They 
are called the de la Vall&e Poussin derivatives of 4 at so, and we shall denote 
them by @(“)(so),..., ~‘k-‘~(so). 

We define @ to be the set of all functions G on the spectrum of L such 
that G is bounded and agrees almost everywhere with a function 
4 E cl:=, Wt,) ( in which case we shall set @-“(t,) = @‘(t,) for 0 <j S 
/3, - 1, 1 ,< n ,< N). Notice that 9 c @. We define a norm on @ by 
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N 5,-l 
11 GII, = es;>yp I W)l + ny, ,& I @%I 

+ \“- es. sup G(s) - 
,K, IS-f.l&l 

.\I n,-I 

+ \‘ ,;” I~“‘bL,)l. 
“r-l 

PROPOSITION 16. @ is a commutatiae Banach algebra with identity. 

The verification of this fact is entirely straightforward and is left to the 
reader. (The identity element 1 of @ is of course defined by the analytic 
function #(A) E 1.) One remark is in order: with our definition of the norm 
on @, we have ]]GH]], < C ]] G]]@ ]]H]ls for some C >, 1 (independent of G 
and H) and (] 1 ]I0 = 1 + N + M. Normally one requires of a Banach algebra 
with identity that ]]xy]] Q ]]x]] ]] JJ]] and ]] l/I = 1. This point is of no impor- 
tance to us, but it may be remedied in the usual fashion: replace ]] ]I0 by the 
equivalent norm 

IIGII:, = ,,“,‘t~,~ II GHII, /II HII,. 

In addition to the norm topology on @, we shall need another notion of 
convergence in @ which. for want of a better name, we shall call c- 
convergence. Namely, we say that a sequence (Gk} in @ u-converges to 
G E @ (symbolically: G, j0 G) if 

(a) Gk(A)+ G(A) for a.e. A E (0. co), 

(b) GI;“(A,)-G”‘@,) for O<j<a,- 1, 1 <m<M, 

(c) @‘(tJ + W(t,) for 0 <j <b, - 1, 1 < n Q N, 

(d) the functions G,(s) and 

are essentially bounded on R, the bound being uniform in k. We note that 
conditions (a), (c), and (d) are fulfilled if 6, and G are C”, &) is bounded 
uniformly in k for each j, and @) -+ Go’ uniformly on compact sets for all j. 

Remark. The algebra @ properly includes the algebra denoted by @ in 
191. Theorem 3 and Proposition 6 of [9] can be sharpened by using the 
present algebra @ and the notion of u-convergence. 

If S’ is a subset of @, we denote by [&I, the set of all limits of u- 
convergent sequences in &‘. Since u-convergence is not defined by a metric 
on @, [J], itself will generally not be closed under u-convergence. 



178 G.B.FOLLAND 

PROPOSITION 17. @ = [[[2],],],. 

For the proof we shall need the following well-known facts about approx- 
imations to the identity on R, proofs of which can be found, for example, in 
Stein [ 181. 

LEMMA 3. Let Q be a nonnegative C* function on R such that 

and q@ E L’ for all j. For k = 1, 2, 3,..., set $k(~) = k#(ks), and forfE La, 
set 

his) =f * h(s) = j-“’ At) #,(s - t) dt. 
--Ix, 

Then fk is C”, 

Ilf V’ IILD < II 4Y’Ilr.I Ilf Ilm for all j, k, 

and fk + f almost everywhere as k -+ 03. If also f is C” and the derivatives of 
f are all bounded, then for all j> 0, IlfY’llLrn < IIf “‘IIt, and fV’-f u’ 
uniformly on compact sets as k + 00. 

We shall also need the following fact, whose proof is a matter of simple 
linear algebra: cf. the proof of Proposition 5 in [9]. 

LEMMA 4. Let @,, be the set of all G E 9 such that Go’@,) = 0 for 
O<j<a,- 1, 1 <m<it4 and &)(t,)=O for O<j,</3,-- 1, l<n<N. 
Then for each G E @ there exist G, E Q0 and Q E 9 such that G = G, + Q. 

Proof of Proposition 17. By Lemma 4, it suflices to show that 
@,, c [ [ [2],],], . The proof will be accomplished in three steps. 

Step 1. Suppose G E QO. We claim that there is a sequence (Gk} c @ 
which a-converges to G, such that t?, is Cco, G$” is bounded for all j, k, ‘and 
Go’ = 0 for all j, k, m. 

Choose a Cm function 4 on R such that 4(s) = $(-s) > 0 for all s, 
4(s) = 0 for ]s I > 1, and j )(s) ds = 1. (Thus 4 satisfies the hypotheses of 
Lemma 3.) Set $k(~) = k#(ks) and G, = G * dk, and note that since G and qik 
are even functions, so is Gk. Then define G, on the spectrum of L by 
Gk(A) = c,(p) for A> 0 and Gf’(&,,) = 0 for all j, m. By Lemma 3, G, is 
Coo, the derivatives of G, are bounded, I] Gk]lLoo < )I C]ILm, and G, + c a.e. 

Next, we examine the derivatives @‘(t,). Fix an n; by making the change 
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of variables s -P s - t, we may assume that t, = 0, and we set p = /I,, . Since 
@) = G * $f) and $j;“(s) = kj+ ‘$‘-“‘(ks), we have 

1 &‘(O)( = 1 k’+ ’ j”” 
-l/k 

$u’( - kt) G(t) dt 1 

<k’+’ I-“* lI#‘j’llL, llGllo It(” dt 
. -L/k 

< Ckj-o --t 0 \ as k-co. 

Moreover 

ck(s)- ___ 

“q’ G,o(O) d 
,ro j! 

O-J #“‘(-kt) = 4(ks - kt) - K 
,Fo 

___ (ksy’ G(t) dt. 
j! I 

(4.2) 

The integrand on the right is zero unless 1 t - sJ < k- ’ or 1 t) < k-‘, and by 
Taylor’s theorem the expression in square brackets is bounded by a constant, 
independent of k, times ( ks ID. We distinguish two cases: either 1 s ( < 2k-’ or 
IsI > 2k-‘. In th e f ormer case the intervals (t - s I < k- ’ and I t ( < k-’ are 
both contained in the interval ) tl < 3k-l, and (4.2) is bounded by 

I”* k[C(ks14] llGllalt\4dt<C’ (slf 
. -3/k 

with C’ independent of k. In the latter case the intervals 1 t - s ( < k-’ and 
1 t I < k-l are disjoint. The integral over 1 t ) < k- ’ is bounded by C’ 1 s I4 as 
above. Also, when 1 t - s ) < k-’ we have $u’(-kt) = 0, so the integral over 
It--s1 <k-l is bounded by 

I 
st(Vk) 

b@s - W II’% It14dt 
s-(1/k) 

G II GIla. (1s I + WW”j-;;l;k; kyW - W dt 

~llGlld31~1/2)p~’ 9(u)d~=IIGlI,(3/2)41~14. 
--I 

This completes the proof that G, +,, G. 

Step 2. Suppose that HE @ is such that If is Cm, flu’ is bounded for 
every j, and H”‘(,$J = 0 for all j, m. Let V(S) = [n(s* + l)]-‘. Then w 
satisfies the hypotheses of Lemma 3, and v(s) = I&-S). As in Step 1, set 
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r,u,&) = ky/(ks), pk = A* vkr and then define Hk on the spectrum of L by 
Hk(A) = flk(fi) for 1 E [0, co) and Hf’(,l,) = 0 for all j, m. By Lemma 3, 
we see that H, +u H. 

Step 3. Suppose FE @J satisfies F”‘(&,J = 0 for allj, m, and P = rf * V/A 
where H, v/ are as in Step 2 and A is a fixed integer which is sufficiently 
large that (t f i/A)* is not an eigenvalue of L for any t E I?. We shall 
construct a sequence (Qk} in 9 which u-converges to F, and this will 
complete the proof. First, we set 

Thus pk(s) is a Riemann sum for the integral 

cc AA(t) dt 
dt = P(s), 

--oc n[ (As - At)2 + 1 ] 

and p,““(s) is the corresponding Riemann sum for the integral defining 
F”‘(s), for all j. It is thus easy to see that for all j> 0, py’ is bounded 
uniformly in k and converges to pi) uniformly on compact sets. Moreover, 
pk is an even rational function of s, and hence is actually a rational function 
of s2, which we denote by P, : thus P,(s2) = p,Js). Finally, we set 

Q&) = PAA) j, (A yl- :i,k)‘m. 
m 

Qk is a rational function which vanishes at infinity and has poles at 
(j/k + i/A)2(-k2 <j < k2) and at 1, - i/k (1 < m < M), so that Qk E 9, at 
least for k sufliciently large. Also, Q,“‘(A,) = 0 for 0 <j < I,,, - 1 and 
l<m<M, and for j>O, &,U’ is bounded on IR uniformly in k and 
converges to F’J) uniformly on compact sets. Thus Qk -+(r F, and we are done. 

We now come to our final major result. 

THEOREM 4. (a) Fix an approximating family {$,} for L. If G E @, 
f E L*, and E > 0, the integral 

converges absolutely for all x E R and defines a function in L2. Moreover, 
I.i.m.,+, G(L)'f exists. 
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(b) For G E @ and f E L’, set 

G(L)f= 1.i.m. G(L)‘f + c (G . B, 
c-0 

* Y*f * Y,(., .)]‘““-‘y&J. 
t?t=l 

Then G(L) E .O(L’) and G(L) is independent of the choice of approximating 
famitjy for L. 

(c) The correspondence G -+ G(L) is a Banach algebra homomorphism 
from @ to .9(L2). 

(d) Zf (Gi} is a sequence in @ which o-converges to G E @, then G,(L) 
converges strongly to G(L). 

(e) Zf G E S then G(L) = G,(L). 

Proof: (Cf. the proof of Theorem 3 in [9].) The absolute convergence of 
G(L)‘f(x) follows immediately from the absolute convergence of Ff(x) 
(Theorem 2). To prove the remaining assertions in (a) and (b), we repeat the 
calculations in the proof of Theorem 2, inserting a factor of G(S’) into each 
term. and we find that 

G(L)‘=;(Z+K’) P+X* 
[ 

W2) 4,(S) srp 4 4 

+ p 
+ 
F ‘3s’) k(W 3*p _ p 

2iW(S) - + 
r WZ) 4,(S) V-S) Fp 

4 w(s) + 

+ p-3 G(S’) #c(S) F*p 
4 - + p-F G(S’> 9,CW Fp 

2i W(S) + 

_ p -c F* ‘3s’) @AS) W) 
4W(S) 

%Y-*p- 
I 

(I + K). (4.3) 

This shows that G(L)’ E AY(L’). As for the behavior of G(L)’ as E -+ 0, the 
first and fourth terms inside the brackets in (4.3) clearly remain bounded and 
converge strongly to 

P+Sr*G(S’) XP+/4 and P-57G(S2)3-*P-/4. 

Next, let y, be as in the proof of Theorem 2. The second term inside the 
brackets in (4.3) is then equal to 

- w,(S) r*p- 
I 

+ P+~G(S2) 4,(S) w,W~*P- (4.4) 
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The first term of (4.4) converges strongly as E + 0 to the corresponding 
operator with d,(S) omitted. As in 191, we handle the second term by means 
of the following elementary fact: 

Let .a be the space of rational functions of the form R(s) = P(s)@ + i)-’ 
where r = (Cz=, p,) - 1 and P is a pol’ynomial of degree at most r. Then for 
each GE @ there is a unique R, E .g such that Rg’(t,) = @‘(t,) for 
O<jjpp,-1, l<n<N. 

Setting H, = G - R,, so that G(s*) = Z-Z&s) + R,.Js), we rewrite the 
second term of (4.4) as 

P+~-W) q,(S) w,P),FP- + P+.+-,(S) 4,(S) vI(S)yTP-. (4.5) 

The second term of (4.5) vanishes, by the Paley-Wiener argument used in 
the proof of Theorem 2. Since ]Hc(s)] = O(]s - fn14#) for s near t,, the first 
term of (4.5) converges strongly as E -+ 0 to the corresponding operator with 
4,(S) omitted. The remaining three terms inside the brackets in (4.3) are 
handled in exactly the same way. Thus (a) and (b) are proved. 

The correspondence G -+ G(L) is clearly linear. We now show that it is 
bounded from @ to .$(L*). Indeed, if we trace through the preceding 
calculations. we find that for some C, > 0, 

II GW)II 

where the vk’s are as in the proof of Theorem 2. Since the vk’s are linear 
combinations of terms of the form (s - t,)-j with 1 < j < /3,, , 1 ,< n < N, we 
need only show that for some C, > 0, 

es”,;p Iff&)I Is - t,l-jG C2 l/G//~ (l<j<P,,l<n<N). (4.6) 

To see this, we note that there exists C, > 0 such that for 0 < k < /?, , 

X B.- I 
=$ IR%)l Q C, r x IR%,J n=l j=O 

rv B.-I 
= c, \‘ F’ IP( < C, /IGIl,, (4.7) 

n=l ,C-il 
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since 2 is finite-dimensional and the expression on the right of the first 
inequality in (4.7) defines a norm on 2. Taking k = 0, we obtain 

On the other hand, 

(4.8) 

+ ess. sup 
“;;’ G”‘(t,) 

IS-r.l<l ,TO 
-j-((S-+G(s) ls-fp 

,< (C,/Pn! + 1) IIGllo- (4.9) 

where we have estimated the term involving R, by using (4.7) together with 
Taylor’s theorem. The estimates (4.8) and (4.9) together imply (4.6). 

We now prove (d). If Gi +LI G, the estimate (4.7) shows that R$‘+ Rkk’ 
uniformly for 0 < k < ,8,. It follows, as above, that HGi + HG a.e. and that 
the functions Hc,(s)(s - t,)-j (1 < j < /3,, , 1 < n < N) are bounded uniformly 
in i. Using the arguments in the proof of (a) and (b), it is then easy to see 
that G,(L) -+ G(L) strongly. 

Next, observe that iff E X, I.i.m.,_, G(L)‘fcan be calculated directly from 
(4.3) without any further machinations: it is equal to the right-hand side of 
(4.3) with 4,(S) omitted throughout, applied to jI However, the same 
calculations that lead to (4.3) show that the latter quantity is equal to 

Thus if G E 2, it follows from Proposition 15 that G(L)f = G,(L)f for 
SE X. Since G(L) and G,(L) are bounded, and X is dense in L’, (e) follows 
immediately. 

It remains to show that (G . H)(L) = G(L) H(L) for any G, HE CD. 
However, the map (G, H) -+ G . H from @ x @ to @ is easily seen to be 
continuous with respect to o-convergence, while composition of operators in 
,S(L’) is continuous with respect to strong convergence. (Separate 
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continuity, which is easier to prove, is sufficient.) The multiplicativity of the 
correspondence G + G(L) therefore follows from (d). (e), and 
Propositions 14 and 17. The proof‘ is complete. 
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