8,636 research outputs found

    Environmental test planning, selection and standardization aids available

    Get PDF
    Requirements for instrumentation, equipment, and methods to be used in conducting environmental tests on components intended for use by a wide variety of technical personnel of different educational backgrounds, experience, and interests is announced

    Energies of B_s meson excited states - a lattice study

    Full text link
    This is a follow-up to our earlier work on the energies and radial distributions of heavy-light mesons. The heavy quark is taken to be static (infinitely heavy) and the light quark has a mass about that of the strange quark. We now concentrate on the energies of the excited states with higher angular momentum and with a radial node. A new improvement is the use of hypercubic blocking in the time direction. The calculation is carried out with dynamical fermions on a 16 cubed times 32 lattice with a lattice spacing approximately 0.1 fm generated using a non-perturbatively improved clover action. In nature the closest equivalent of this heavy-light system is the B_s meson, which allows us to compare our lattice calculations to experimental results (where available) or to give a prediction where the excited states, particularly P-wave states, should lie. We pay special attention to the spin-orbit splitting, to see which one of the states (for a given angular momentum L) has the lower energy. An attempt is made to understand these results in terms of the Dirac equation.Comment: 35 pages. v3: Data from two new lattices added. New results in several chapter

    Investigation of electrochemistry of high energy compounds in organic electrolytes, november 1, 1964 - april 30, 1965

    Get PDF
    Conversion by electrochemical process of chemical to electrical energy - high energy compounds in organic electrolytes and cathode material

    SSME structural dynamic model development

    Get PDF
    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed

    Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite

    Full text link
    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K) and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is present. Around room temperature, the characteristic relaxation times for the C4 rotation is found to be ps while for the C3 rotation ps. The -dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance
    • …
    corecore