31 research outputs found

    Detection of antisense protein (ASP) RNA transcripts in individuals infected with human immunodeficiency virus type 1 (HIV-1).

    Get PDF
    The detection of antisense RNA is hampered by reverse transcription (RT) non-specific priming, due to the ability of RNA secondary structures to prime RT in the absence of specific primers. The detection of antisense RNA by conventional RT-PCR does not allow assessment of the polarity of the initial RNA template, causing the amplification of non-specific cDNAs. In this study we have developed a modified protocol for the detection of human immunodeficiency virus type 1 (HIV-1) antisense protein (ASP) RNA. Using this approach, we have identified ASP transcripts in CD4+ T cells isolated from five HIV-infected individuals, either untreated or under suppressive therapy. We show that ASP RNA can be detected in stimulated CD4+ T cells from both groups of patients, but not in unstimulated cells. We also show that in untreated patients, the patterns of expression of ASP and env are very similar, with the levels of ASP RNA being markedly lower than those of env. Treatment of cells from one viraemic patient with α-amanitin greatly reduces the rate of ASP RNA synthesis, suggesting that it is associated with RNA polymerase II, the central enzyme in the transcription of protein-coding genes. Our data represent the first nucleotide sequences obtained in patients for ASP, demonstrating that its transcription indeed occurs in those HIV-1 lineages in which the ASP open reading frame is present

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group.

    Get PDF
    Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data

    The greater than twofold cost of integration for retroviruses

    No full text
    Sexual reproduction, typically conceived of as a puzzling feature of eukaryotes, has posed an extraordinary evolutionary challenge in terms of the twofold replicative advantage of asexual over sexual organisms. Here we show mathematically that a greater than twofold cost is paid by retroviruses such as HIV during reverse transcription. For a retrovirus, replication is achieved through RNA reverse transcription and the effectively linear growth processes of DNA transcription during gene expression. Retroviruses are unique among viruses in that they show an alternation of generations between a diploid free living phase and a haploid integrated phase. Retroviruses engage in extensive recombination during the synthesis of the haploid DNA provirus. Whereas reverse transcription generates large amounts of sequence variation, DNA transcription is a high-fidelity process. Retroviruses come under strong selection pressures from immune systems to generate escape mutants, and reverse transcription into the haploid DNA phase serves to generate diversity followed by a phase of transcriptional clonal expansion during the restoration of diploidy from a stable, long lived, DNA encoded provirus

    Primate immunodeficiency virus classification and nomenclature: Review

    No full text
    The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. This review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written in 2000. © 201

    Detection of Human Immunodeficiency Virus Type 1 (HIV-1) Antisense Protein (ASP) RNA Transcripts in Patients by Strand-Specific RT-PCR.

    No full text
    In retroviruses, antisense transcription has been described in both human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus 1 (HTLV-1). In HIV-1, the antisense protein ASP gene is located on the negative strand of env, in the reading frame -2, spanning the junction gp120/gp41. In the sense orientation, the 3' end of the ASP open reading frame overlaps with gp120 hypervariable regions V4 and V5. The study of ASP RNA has been thwarted by a phenomenon known as RT-self-priming, whereby RNA secondary structures have the ability to prime RT in absence of the specific primer, generating non-specific cDNAs. The combined use of high RNA denaturation with biotinylated reverse primers in the RT reaction, together with affinity purification of the cDNA onto streptavidin-coated magnetic beads, has allowed us to selectively amplify ASP RNA in CD4+ T cells derived from individuals infected with HIV-1. Our method is relatively low-cost, simple to perform, highly reliable, and easily reproducible. In this respect, it represents a powerful tool for the study of antisense transcription not only in HIV-1 but also in other biological systems

    Nonrandom Distribution of Cryptic Repeating Triplets of Purines and Pyrimidines (RNY)(n) in gp120 of HIV Type1.

    No full text
    Abstract We have analyzed purine (R) and pyrimidine (Y) codon patterns in variable and constant regions of HIV-1 gp120 in seven patients infected with different HIV-1 subtypes and naive to antiretroviral therapy. We have calculated the relative frequency of each in-frame codon RNY, YNR, RNR, and YNY (N=any nucleotide) in variable and constant regions of gp120, in the sequence within indels and at indels' flanking sites. Our data show that hypervariable regions V1, V2, V4, and V5 are characterized by the presence of long stretches of RNY codons constituting the majority of the sequence portion within insertions/deletions. In full-length gp120 and within inserted/deleted fragments the number of AVT (V=A, C, G) codons did not exceed 50% of the total RNY codons. RNY strings in variable regions spanned up to 21 codons and were always in frame. In contrast, RNY strings in constant regions were mostly out of frame and their length was limited to five codons. The frequency of the codon RNY was found to be significantly higher in variable regions (p&lt;0.0001; t-test), within indels, and at indels' flanking sites (p&lt;0.0001; χ(2) test). Analysis of the distribution of RNY strings equal to or longer than five codons in the full genome of HXB2 also shows that these sequences are mostly out of frame, unless they contain a potential N-glycosylation site or an asparagine. These data suggest that cryptic repeats of RNY may play a role in the genesis of multiple base insertions and deletions in hypervariable regions of gp120
    corecore