109 research outputs found

    Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury

    Get PDF
    Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI.The work was financed by the Fondo de Investigaciones Sanitarias (FIS PI12/00519; FIS PI15/00110), Spain. Eirini Pantazi is fellowship-holder of AGAUR (2012FI B00382), Generalitat de Catalunya, Barcelona, Spain.Peer Reviewe

    PAP1 signaling involves MAPK signal transduction

    Get PDF
    El pdf del artículo es la versión post-print.-- et al.Pancreatitis-associated protein 1 (PAP1) belongs to the Reg family of secretory proteins. Several important biological roles have been attributed to PAP1 but the signaling pathways activated by this protein remain only partially understood. Here, we describe the intracellular pathways triggered by PAP1 in a pancreatic acinar cell line. Taking advantage of the fact that PAP1 induces its own transcription, we performed ChIP assays to analyze the recruitment of transcriptional factors on its promoter. Our results show that PAP1 increased the transactivation activity of pap1 and the binding on its promoter of the nuclear factors C/EBPβ, P-CREB, P-ELK1, EGR1, STAT3, and ETS2, which are downstream targets of MAPK signaling. p44/42, p38, and JNK MAPKs activity increased after PAP1 treatment. In addition, pharmacological inhibition of these kinases markedly inhibited the induction of pap1 mRNA. Taken together, these results indicated that the mechanism of PAP1 action involves the activation of the MAPK superfamily.This work was supported by the FIS PI050599 and FIS PI081608 projects to E. Folch-Puy, Acción Integrada HF2006-0092 and CIBERehd to D. Closa and Spanish Ministry of Science and Technology BFU2007-63120 and CSD2006-49 to G. López-Rodas. CIBERehd is funded by the Instituto de Salud Carlos III. E. Folch-Puy is the recipient of a Ramón y Cajal contract from the Spanish Ministry of Education and Science. M. Ferrés-Masó is the recipient of a FIS-Instituto de Salud Carlos III contract PI050599.Peer reviewe

    The reg4gene, amplified in the early stages of pancreatic cancer development, is a promising therapeutic target

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: The aim of our work was to identify the genes specifically altered in pancreatic adenocarcinoma and especially those that are altered early in cancer development.[Methodology/Principal Findings]: Gene copy number was systematically assessed with an ultra-high resolution CGH oligonucleotide microarray in DNA from samples of pancreatic cancer. Several new cancer-associated variations were observed. In this work we focused on one of them, involving the reg4 gene. Gene copy number gain of the reg4 gene was confirmed by qPCR in 14 cancer samples. It was also found with increased copy number in most PanIN3 samples. The relationship betweena gain in reg4 gene copy number and cancer development was investigated on the human pancreatic cancer cell line Mia-PaCa2 xenografted under the skin of nude mice. When cells were transfected with a vector allowing reg4 expression, they generated tumors almost twice larger in size. In addition, these tumors were more resistant to gemcitabine treatment than control tumors. Interestingly, weekly intraperitoneal administration of a monoclonal antibody to reg4 halved the size of tumors generated by Mia-PaCa2 cells, suggesting that the antibody interfered with a paracrine/autocrine mechanism involving reg4 and stimulating cancer progression. The addition of gemcitabine resulted in further reduction, tumors becoming 5 times smaller than control. Exposure to reg4 antibody resulted in a significant decrease in intra-tumor levels of pAkt, Bcl-xL, Bcl-2, survivin and cyclin D1.[Conclusions/Significance]: It was concluded that adjuvant therapies targeting reg4 could improve the standard treatment of pancreatic cancer with gemcitabine.This work was supported by grants from INSERM, Ligue Contre le Cancer and INCA to JLI and by the FIS PI081608 project, Acción Integrada HF2006-0092 and CIBERehd. CIBERehd is funded by the Instituto de Salud Carlos III to EF-P and DC. EF-P is the recipient of a Ramón y Cajal contract from the Spanish Ministry of Education and Science and MF-M is the recipient of a FIS-Instituto de Salud Carlos III contract PI050599.Peer reviewe

    PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation

    Get PDF
    The need to meet the demand for transplants entails the use of steatotic livers, more vulnerable to ischemia-reperfusion (IR) injury. Therefore, finding the optimal composition of static cold storage (SCS) preservation solutions is crucial. Given that ROS regulation is a therapeutic strategy for liver IR injury, we have added increasing concentrations of PEG35 and glutathione (GSH) to the preservation solutions (IGL-1 and IGL-2) and evaluated the possible protection against energy depletion and oxidative stress. Fatty livers from obese Zücker rats were isolated and randomly distributed in the control (Sham) preserved (24 h at 4 °C) in IGL-0 (without PEG35 and 3 mmol/L GSH), IGL-1 (1 g/L PEG35, and 3 mmol/L GSH), and IGL-2 (5 g/L PEG35 and 9 mmol/L GSH). Energy metabolites (ATP and succinate) and the expression of mitochondrial oxidative phosphorylation complexes (OXPHOS) were determined. Mitochondrial carrier uncoupling protein 2 (UCP2), PTEN-induced kinase 1 (PINK1), nuclear factor-erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the inflammasome (NLRP3) expressions were analyzed. As biomarkers of oxidative stress, protein oxidation (AOPP) and carbonylation (DNP derivatives), and lipid peroxidation (malondialdehyde (MDA)-thiobarbituric acid (TBA) adducts) were measured. In addition, the reduced and oxidized glutathione (GSH and GSSG) and enzymatic (Cu-Zn superoxide dismutase (SOD), CAT, GSH S-T, GSH-Px, and GSH-R) antioxidant capacities were determined. Our results showed that the cold preservation of fatty liver graft depleted ATP, accumulated succinate and increased oxidative stress. In contrast, the preservation with IGL-2 solution maintained ATP production, decreased succinate levels and increased OXPHOS complexes I and II, UCP2, and PINK-1 expression, therefore maintaining mitochondrial integrity. IGL-2 also protected against oxidative stress by increasing Nrf2 and HO-1 expression and GSH levels. Therefore, the presence of PEG35 in storage solutions may be a valuable option as an antioxidant agent for organ preservation in clinical transplantation

    Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation

    Get PDF
    © 2015 Baishideng Publishing Group Inc. All rights reserved. Aim: To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. Methods: Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4°C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD+, a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. Results: The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 133.44 vs 206 33.61, P + (0.87 0.22 vs 1.195 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. Conclusion: The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model.Supported by Grants from Fondo de Investigaciones Sanitarias, No. FIS PI12/00519; fellowship from Agència de Gestió d’Ajuts Universitaris i de Recerca, No. 2012FI_B00382; Generalitat de Catalunya, Barcelona, Catalonia, Spain (to Pantazi E)Peer Reviewe

    Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation

    Get PDF
    © 2015 Baishideng Publishing Group Inc. All rights reserved. Aim: To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. Methods: Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4°C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD+, a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. Results: The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 133.44 vs 206 33.61, P + (0.87 0.22 vs 1.195 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. Conclusion: The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model.Supported by Grants from Fondo de Investigaciones Sanitarias, No. FIS PI12/00519; fellowship from Agència de Gestió d’Ajuts Universitaris i de Recerca, No. 2012FI_B00382; Generalitat de Catalunya, Barcelona, Catalonia, Spain (to Pantazi E)Peer Reviewe

    Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation

    Get PDF
    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.Eirini Pantazi thanks the fellowship from AGAUR (2012FI_B00382), Generalitat de Catalunya, Barcelona, Catalonia, Spain. The authors would like to thank the Fondo de Investigaciones Sanitarias FIS PI12/00519; FIS PI15/00110 for the economic support.Peer Reviewe

    Sirtuin 1 in rat orthotopic liver transplantation: An IGL-1 preservation solution approach

    Get PDF
    © The Author(s) 2015. AIM: To investigate the possible involvement of Sirtuin 1 (SIRT1) in rat orthotopic liver transplantation (OLT), when Institute Georges Lopez 1 (IGL-1) preservation solution is enriched with trimetazidine (TMZ). METHODS: Male Sprague-Dawley rats were used as donors and recipients. Livers were stored in IGL-1 preservation solution for 8h at 4 °C, and then underwent OLT according to Kamada's cuff technique without arterialization. In another group, livers were stored in IGL-1 preservation solution supplemented with TMZ, at 10-6 mol/L, for 8 h at 4 °C and then underwent OLT. Rats were sacrificed 24 h after reperfusion, and liver and plasma samples were collected. Liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity) oxidative stress (malondialdehyde levels), and nicotinamide adenine dinucleotide (NAD+), the co-factor necessary for SIRT1 activity, were determined by biochemical methods. SIRT1 and its substrates (ac-FoxO1, ac-p53), the precursor of NAD+, nicotinamide phosphoribosyltransferase (NAMPT), as well as the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), p-mTOR, p-p70S6K (direct substrate of mTOR), autophagy parameters (beclin-1, LC3B) and MAP kinases (p-p38 and p-ERK) were determined by Western blot. RESULTS: Liver grafts preserved in IGL-1 solution enriched with TMZ presented reduced liver injury and mitochondrial damage compared with those preserved in IGL-1 solution alone. In addition, livers preserved in IGL-1 + TMZ presented reduced levels of oxidative stress. This was consistent with enhanced SIRT1 protein expression and elevated SIRT1 activity, as indicated by decreased acetylation of p53 and FoxO1. The elevated SIRT1 activity in presence of TMZ can be attributed to the enhanced NAMPT protein and NAD+/NADH levels. Up-regulation of SIRT1 was consistent with activation of AMPK and inhibition of phosphorylation of mTOR and its direct substrate (p-p70S6K). As a consequence, autophagy mediators (beclin-1 and LC3B) were overexpressed. Furthermore, MAP kinases were regulated in livers preserved with IGL-1 + TMZ, as they were characterized by enhanced p-ERK and decreased p-p38 protein expression. CONCLUSION: Our study shows that IGL-1 preservation solution enriched with TMZ protects liver grafts from the IRI associated with OLT, through SIRT1 up-regulation.Supported by Fondo de Investigaciones Sanitarias, No. FIS PI12/00519; and Eirini Pantazi is the recipient of a fellowship from AGAUR, No. 2012FI_B00382, Generalitat de Catalunya, Barcelona, Catalonia, Spain.Peer Reviewe

    Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads.

    Full text link
    Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics

    Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update

    Get PDF
    Aldehyde dehydrogenase 2 (ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury (IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic "preconditioning" strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation
    corecore