7 research outputs found

    Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    Get PDF
    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.Fil: Reckziegel, Florencia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Leonardo, Mingari. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Collini, E.. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Viramonte, Jose German. Universidad Nacional de Salta; ArgentinaFil: Romero, J.. Centro de Investigación y Difusión de Volcanes de Chile; Chile. Universidad de Atacama; ChileFil: Osores, María Soledad. Comision Nacional de Actividades Espaciales; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A numerical formulation to solve the ALE Navier-Stokes equations applied to the withdrawal of magma chambers

    Get PDF
    La tesis presenta un algoritmo para la resolución de las ecuaciones de Navier-Stokes con acoplamiento mecánico en el contexto del método de los elementos finitos. La solución de la versión ALE de las ecuaciones de Navier-Stokes se basa en un método de paso fraccionario combinado con una técnica de proyección del gradiente de presiones que produce el efecto de estabilización requerido para el campo de presiones en las versiones implícitas del algoritmo. El algoritmo trata simultáneamente flujos compresibles e incompresibles usando los mismos espacios de interpolación para los campos de velocidad y presión. Los problemas de interacción fluido estructura se resuelven mediante un procedimiento alternado en el cual las ecuaciones del fluido y las de la estructura se integran alternativamente en el tiempo. Se contempla también una estrategia de remallado con una interpolación conservativa de variables nodales. Las aplicaciones particulares se centran básicamente en la modelización de la dinámica de vaciado de cámaras magmáticas. Se propone un modelo físico para los tipos de erupciones volcánicas mas comunes. Las distintas simulaciones de eventos eruptivos contemplan desde erupciones desencadenadas por saturación de volátiles hasta erupciones que forman calderas de colapso. Por otro lado, se presenta también un procedimiento numérico para calcular deformaciones viscoelásticas del terreno en zonas de actividad volcánica. El procedimiento se basa en el principio de correspondencia combinado con el método de las series de Prony para obtener transformadas de Laplace inversas. Las aplicaciones permiten acotar el dominio de aplicabilidad de los procedimientos analíticos actuales y, simultáneamente, permiten contemplar un espectro mas amplio de posibilidades como, por ejemplo, fuentes extensas, efectos topográficos o anisotropias de la corteza.This thesis presents a numerical formulation to solve the Navier-Stokes equations with mechanical coupling in the context of a Finite Element Method. The solution of the ALE Navier-Stokes equations is based on a fractional step method combined with a pressure gradient projection technique that produces the required stabilisation of the pressure field when implicit versions of the algorithm are considered. The algorithm deals simultaneously with both compressible and incompressible flows using the same interpolation spaces for the pressure and the velocity fields. Fluid-structure interaction problems are solved by means of a staggered procedure in which the fluid and the structural equations are alternatively integrated in time by using separate solvers. A remeshing strategy with a conservative interpolation of nodal variables is also developed. Particular applications are addressed concerning the modelling of the dynamics of magma withdrawal from crustal reservoirs. A physical model for the most common types of (explosive) volcanic eruptions is proposed. Several simulations of eruptive events, ranging from volatile oversaturation driven eruptions to caldera-forming eruptions, are presented. On the other hand, a numerical procedure to compute viscoelastic ground deformations in volcanic areas is also proposed. This procedure is based on the correspondence principle combined with the Laplace transform inversion by means of the Prony series method. It allows to constrain the domain of applicability of the analytical procedures used nowadays and, simultaneously, allows to contemplate a wider spectrum of possibilities such as, for instance, extended sources, topographic effects or anisotropies of the crust

    ATLAS-1.0: Atmospheric Lagrangian dispersion model for tephra transport and deposition

    No full text
    ATLAS-1.0 (ATmospheric LAgrangian diSpersion) is a new atmospheric dispersion and sedimentation Lagrangian model tailored to volcanic tephra/ash. The model solves the Advection–Diffusion–Sedimentation equation across multiple scales (from regional to global) and can be driven off-line by different numerical weather prediction models in combination. For example, meteorological data from the mesoscale Weather Research Forecast (WRF) model can be combined with data from the Global Forecast System (GFS) so that ATLAS automatically selects the highest resolution data available in any part of the computational domain. ATLAS can be used in forward mode to forecast ash dispersal from a volcano (or from extended sources) or in backward mode to integrate trajectories backwards in time and constrain unknown source term characteristics. Multiple source terms can be defined, e.g. to simulate several eruption phases with different granulometric characteristics on a single model execution. We validate the implementation of the model using the 2011 Cordón Caulle and the 2015 Calbuco eruptions and compare the results with previous simulations performed with the FALL3D model. The code has been designed from scratch to facilitate future parallelization, inclusion of ash resuspension schemes, and ensemble-based probabilistic forecast assimilating data from satellite retrievals.Fil: Reckziegel, Florencia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Folch Duran, Arnau. Barcelona Supercomputing Center; EspañaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentin

    Modeling volcanic ash resuspension - Application to the 14-18 October 2011 outbreak episode in central Patagonia, Argentina

    Get PDF
    Volcanic fallout deposits from the June 2011 Cordón Caulle eruption on central Patagonia were remobilized in several occasions months after their emplacement. In particular, during 14-18 October 2011, an intense outbreak episode generated widespread volcanic clouds that were dispersed across Argentina, causing multiple impacts in the environment, affecting the air quality and disrupting airports. Fine ash particles in volcanic fallout deposits can be resuspended under favorable meteorological conditions, particularly during strong wind episodes in arid environments with low soil moisture and poor vegetation coverage. As opposed to eruption-formed ash clouds, modeling of resuspension-formed ash clouds has received little attention. In consequence, there are no emission schemes specially developed and calibrated for resuspended volcanic ash, and few operational products exists to model and forecast the formation and dispersal of resuspension ash clouds. Here we implement three dust emission schemes of increasing complexity in the FALL3D tephra dispersal model and use the 14-18 October 2011 outbreak episode as a model test case. We calibrate the emission schemes and validate the results of the coupled WRF-ARW (Weather Research and Forecasting - Advanced Research WRF)/FALL3D modeling system using satellite imagery and measurements of visibility (a quantity related to total suspended particle concentration at the surface) and particulate matter (PM10) concentration at several meteorological and air quality stations located at Argentina and Uruguay. Our final goal is to test the capability of the modeling system to become, in the near future, an operational forecast product for volcanic ash resuspension events.Fil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Mingari, Leonardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento de Metereologia; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Osores, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Comision Nacional de Actividades Espaciales; ArgentinaFil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento de Metereologia; Argentin

    Singular spectrum analysis filtering and Fourier inversion: an efficient and fast way to improve resolution and quality of current density maps with low-cost Hall scanning systems

    No full text
    Measurement Science and Technology Paper Singular spectrum analysis filtering and Fourier inversion: an efficient and fast way to improve resolution and quality of current density maps with low-cost Hall scanning systems Jaume Amorós1 , Arnau Duran2, Miquel Carrera3, Josep López4 and Xavier Granados5 Published 13 December 2018 • © 2018 IOP Publishing Ltd Measurement Science and Technology, Volume 30, Number 1 34 Total downloads Turn on MathJax Get permission to re-use this article Share this article Share this content via email Share on Facebook Share on Twitter Share on Google+ Share on CiteULike Share on Mendeley Article information Abstract We provide a Biot–Savart inversion scheme that, for any two-dimensional, or bulk with planar crystallization, high-temperature superconducting (HTS) sample, determines current density maps with a higher resolution and accuracy than previous procedures and at a fraction of its computational cost. The starting point of our scheme is a Hall scanning microscopy map of the out-of-plane component of the magnetic field generated by the current. Such maps are noisy in scans of real samples with commercial-grade equipment, and their error is the limiting factor in any Biot–Savart inversion scheme. The main innovation of our proposed scheme is a singular spectrum analysis (SSA) filtering of the Hall probe maps, which cancels measurement errors such as noise or drifts without introducing any artifacts in the field map. The SSA filtering of the Hall probe data is so successful in this task that the resulting magnetic field map does not require an overdetermined QR inversion, allowing Fourier inversion of the Biot–Savart problem. Our implementation of SSA filtering of the Hall scan measurements, followed by Biot–Savart inversion using the fast Fourier transform (FFT), is applied to both simulations and real samples of HTS tape stacks. The algorithm works in cases where ill conditioning ruled out the application of Fourier inversion, and achieves a finer resolution for a fraction of the cost of the QR inversion used to date. The computation passes physical and statistical validity tests in all cases, and in three-dimensional samples it is shown to yield the average, with a depth-dependent weight, of the current density circulating in the different layers of the sample.Peer ReviewedPostprint (author's final draft

    Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence

    No full text
    The evolution of High-Performance Computing (HPC) platforms enables the design and execution of progressively larger and more complex workflow applications in these systems. The complexity comes not only from the number of elements that compose the workflows but also from the type of computations they perform. While traditional HPC workflows target simulations and modelling of physical phenomena, current needs require in addition data analytics (DA) and artificial intelligence (AI) tasks. However, the development of these workflows is hampered by the lack of proper programming models and environments that support the integration of HPC, DA, and AI, as well as the lack of tools to easily deploy and execute the workflows in HPC systems. To progress in this direction, this paper presents use cases where complex workflows are required and investigates the main issues to be addressed for the HPC/DA/AI convergence. Based on this study, the paper identifies the challenges of a new workflow platform to manage complex workflows. Finally, it proposes a development approach for such a workflow platform addressing these challenges in two directions: first, by defining a software stack that provides the functionalities to manage these complex workflows; and second, by proposing the HPC Workflow as a Service (HPCWaaS) paradigm, which leverages the software stack to facilitate the reusability of complex workflows in federated HPC infrastructures. Proposals presented in this work are subject to study and development as part of the EuroHPC eFlows4HPC project.This work has received funding from the European HighPerformance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland and Norway. In Spain, it has received complementary funding from MCIN/AEI/10.13039/501100011033, Spain and the European Union NextGenerationEU/PRTR (contracts PCI2021-121957, PCI2021-121931, PCI2021-121944, and PCI2021-121927). In Germany, it has received complementary funding from the German Federal Ministry of Education and Research (contracts 16HPC016K, 6GPC016K, 16HPC017 and 16HPC018). In France, it has received financial support from Caisse des dépôts et consignations (CDC) under the action PIA ADEIP (project Calculateurs). In Italy, it has been preliminary approved for complimentary funding by Ministero dello Sviluppo Economico (MiSE) (ref. project prop. 2659). In Norway, it has received complementary funding from the Norwegian Research Council, Norway under project number 323825. In Switzerland, it has been preliminary approved for complimentary funding by the State Secretariat for Education, Research, and Innovation (SERI), Norway. In Poland, it is partially supported by the National Centre for Research and Development under decision DWM/EuroHPCJU/4/2021. The authors also acknowledge financial support by MCIN/AEI /10.13039/501100011033, Spain through the ‘‘Severo Ochoa Programme for Centres of Excellence in R&D’’ under Grant CEX2018-000797-S, the Spanish Government, Spain (contract PID2019-107255 GB) and by Generalitat de Catalunya, Spain (contract 2017-SGR-01414). Anna Queralt is a Serra Húnter Fellow.Peer ReviewedArticle signat per 37 autors/es: Jorge Ejarque (a), Rosa M. Badia (a), Loïc Albertin (f), Giovanni Aloisio (h), Enrico Baglione (k), Yolanda Becerra (a,c), Stefan Boschert (o) , Julian R. Berlin (a), Alessandro D’Anca (h), Donatello Elia (h), François Exertier (f), Sandro Fiore (i), José Flich (e), Arnau Folch (m,a), Steven J. Gibbons (p), Nikolay Koldunov (l), Francesc Lordan (a), Stefano Lorito (k), Finn Løvholt (p), Jorge Macías (j), Fabrizio Marozzo (g), Alberto Michelini (k), Marisol Monterrubio-Velasco (a), Marta Pienkowska (n), Josep de la Puente (a), Anna Queralt (c,a), Enrique S. Quintana-Ortí (e), Juan E. Rodríguez (a), Fabrizio Romano (k), Riccardo Rossi (b,c), Jedrzej Rybicki (d), Miroslaw Kupczyk (q), Jacopo Selva (k), Domenico Talia (g), Roberto Tonini (k), Paolo Trunfio (g), Manuela Volpe (k) // (a) Barcelona Supercomputing Center (BSC), (b) Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE), (c) Universitat Politècnica de Catalunya (UPC), (d) Jülich Supercomputing Centre (JSC), (e) Universitat Politécnica de València (UPV), (f) Atos BDS R&D HPC & AI Software, (g) DtoK Lab Srl, (h) Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), (i) Department of Information Engineering and Computer Science, University of Trento, (j) Universidad de Málaga (UMA), (k) Istituto Nazionale di Geofisica e Vulcanologia (INGV), (l) Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, (m) Consejo Superior Investigaciones Cientificas (CSIC), (n) Eidgenössische Technische Hochschule (ETH) Zürich, (o) Siemens AG, (p) Norwegian Geotechnical Institute (NGI), (q) Poznan Supercomputing and Networking Center (PSNC)Postprint (author's final draft
    corecore