56 research outputs found

    A human antibody against Zika virus crosslinks the E protein to prevent infection

    Get PDF
    The recent Zika virus (ZIKV) epidemic has been linked to unusual and severe clinical manifestations including microcephaly in fetuses of infected pregnant women and Guillian-Barré syndrome in adults. Neutralizing antibodies present a possible therapeutic approach to prevent and control ZIKV infection. Here we present a 6.2 Å resolution three-dimensional cryo-electron microscopy (cryoEM) structure of an infectious ZIKV (strain H/PF/2013, French Polynesia) in complex with the Fab fragment of a highly therapeutic and neutralizing human monoclonal antibody, ZIKV-117. The antibody had been shown to prevent fetal infection and demise in mice. The structure shows that ZIKV-117 Fabs cross-link the monomers within the surface E glycoprotein dimers as well as between neighbouring dimers, thus preventing the reorganization of E protein monomers into fusogenic trimers in the acidic environment of endosomes

    The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces

    Get PDF
    SummaryViral genomes are packaged into “procapsids” by powerful molecular motors. We report the crystal structure of the DNA packaging motor protein, gene product 17 (gp17), in bacteriophage T4. The structure consists of an N-terminal ATPase domain, which provides energy for compacting DNA, and a C-terminal nuclease domain, which terminates packaging. We show that another function of the C-terminal domain is to translocate the genome into the procapsid. The two domains are in close contact in the crystal structure, representing a “tensed state.” A cryo-electron microscopy reconstruction of the T4 procapsid complexed with gp17 shows that the packaging motor is a pentamer and that the domains within each monomer are spatially separated, representing a “relaxed state.” These structures suggest a mechanism, supported by mutational and other data, in which electrostatic forces drive the DNA packaging by alternating between tensed and relaxed states. Similar mechanisms may occur in other molecular motors

    Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres

    No full text
    Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core

    Morphogenesis of the T4 tail and tail fibers

    Get PDF
    Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study

    Photosensitivity, chemical composition gratings and optical fiber based components

    No full text
    The different topics of this thesis include high-temperaturestable fiber Bragg gratings, photosensitivity and fiber basedcomponents. Fiber Bragg gratings (FBG) are wavelength dispersiverefractive index structures manufactured through UV exposure ofoptical fibers. Their applications range from WDM filters,dispersion compensators and fiber laser resonators fortelecommunication applications to different types of point ordistributed sensors for a variety of applications. One aim of this thesis has been to study a new type of FBGreferred to as chemical composition grating. These gratingsdiffer from other types of FBG in that their refractive indexstructure is attributed to a change in the chemicalcomposition. Chemical composition gratings have shown to beextremely temperature stable surviving temperatures in excessof 1000 oC. Photosensitivity of pure silica and germanium-dopedcore fibers in the presence of hydroxyl groups has also beenstudied and different types of fiber based components have beendeveloped. The main result of the thesis is a better understanding ofthe underlying mechanism of the formation of chemicalcomposition gratings and their decay behavior at elevatedtemperatures. The refractive index modulation is caused by aperiodic change in the fluorine concentration, which has beenverified through time-of-flight secondary-ion-mass spectrometryand through studies of the decay behavior of chemicalcomposition gratings. A model based on diffusion of dopants hasbeen developed, which successfully predicts the thermal decayat elevated temperatures. Studies of the dynamics of chemicalcomposition grating formation have resulted in a manufacturingtechnique that allows for reproducible gratingfabrication. The main results regarding photosensitivity is a method tosignificantly increase the effect of UV radiation on standardtelecommunications fiber. The method, referred to asOH-flooding, has also been applied to pure-silica core fibersresulting in the first report of strong grating formation insuch fibers. Finally, research into different schemes for developingfiber-based components has resulted in two types of singlefiber integrated Mach-Zehnder interferometers; one passiveinterferometer that can be used as an optical filter and oneactive interferometer controlled with internal metalelectrodes. Keywords:optical fibers, fiber Bragg gratings,photosensitivity, thermal stability, fiber sensors, chemicalcomposition gratings, fiber components, Mach-Zehnderinterferometer, optical switch, optical modulator.QC 2010060

    Photosensitivity, chemical composition gratings and optical fiber based components

    No full text
    The different topics of this thesis include high-temperaturestable fiber Bragg gratings, photosensitivity and fiber basedcomponents. Fiber Bragg gratings (FBG) are wavelength dispersiverefractive index structures manufactured through UV exposure ofoptical fibers. Their applications range from WDM filters,dispersion compensators and fiber laser resonators fortelecommunication applications to different types of point ordistributed sensors for a variety of applications. One aim of this thesis has been to study a new type of FBGreferred to as chemical composition grating. These gratingsdiffer from other types of FBG in that their refractive indexstructure is attributed to a change in the chemicalcomposition. Chemical composition gratings have shown to beextremely temperature stable surviving temperatures in excessof 1000 oC. Photosensitivity of pure silica and germanium-dopedcore fibers in the presence of hydroxyl groups has also beenstudied and different types of fiber based components have beendeveloped. The main result of the thesis is a better understanding ofthe underlying mechanism of the formation of chemicalcomposition gratings and their decay behavior at elevatedtemperatures. The refractive index modulation is caused by aperiodic change in the fluorine concentration, which has beenverified through time-of-flight secondary-ion-mass spectrometryand through studies of the decay behavior of chemicalcomposition gratings. A model based on diffusion of dopants hasbeen developed, which successfully predicts the thermal decayat elevated temperatures. Studies of the dynamics of chemicalcomposition grating formation have resulted in a manufacturingtechnique that allows for reproducible gratingfabrication. The main results regarding photosensitivity is a method tosignificantly increase the effect of UV radiation on standardtelecommunications fiber. The method, referred to asOH-flooding, has also been applied to pure-silica core fibersresulting in the first report of strong grating formation insuch fibers. Finally, research into different schemes for developingfiber-based components has resulted in two types of singlefiber integrated Mach-Zehnder interferometers; one passiveinterferometer that can be used as an optical filter and oneactive interferometer controlled with internal metalelectrodes. Keywords:optical fibers, fiber Bragg gratings,photosensitivity, thermal stability, fiber sensors, chemicalcomposition gratings, fiber components, Mach-Zehnderinterferometer, optical switch, optical modulator.QC 2010060

    Laser cladding of transparent fused silica glassusing sub-μm powder

    No full text
    Fused silica glass is a commonly used high-performance material. However, due tothe high temperature necessary for its production, manufacturing can also be challenging andcostly. An attractive approach is additive manufacturing through laser cladding. Laser claddingof transparent fused silica was achieved using a CO2-laser to locally melt the substrate whileinjecting a stream of fumed silica glass powder into the melt-pool. By the described technique, itis possible to manufacture fully sintered silica glass with deposition rate up to 29 mm3/min. Inthis work we have studied deposition dynamics and influence of different process parameters onthe final deposition quality.QC 20210917</p

    Widely tunable Er:Yb fiber laser using a fiber Bragg grating embedded in a 3D printed beam

    No full text
    A narrow linewidth (Δλ &lt; 0.07 nm), low noise, widely tunable Er:Yb ring fiber laser is demonstrated using a fiber Bragg grating mirror embedded in a 3D printed polymer beam. By bending the polymer beam, continuous tuning of the laser was achieved over 30 nm, from 1543 nm to 1574 nm, with power variation below 1 dB, showing high temporal and spectral stability and a signal-to-background value exceeding 50 dB. These results present a versatile and simple method for tailoring tunable narrow-linewidth lasers.QC 20210208</p
    corecore