100 research outputs found

    The Generalized Dirichlet to Neumann map for the KdV equation on the half-line

    Full text link
    For the two versions of the KdV equation on the positive half-line an initial-boundary value problem is well posed if one prescribes an initial condition plus either one boundary condition if qtq_{t} and qxxxq_{xxx} have the same sign (KdVI) or two boundary conditions if qtq_{t} and qxxxq_{xxx} have opposite sign (KdVII). Constructing the generalized Dirichlet to Neumann map for the above problems means characterizing the unknown boundary values in terms of the given initial and boundary conditions. For example, if {q(x,0),q(0,t)}\{q(x,0),q(0,t) \} and {q(x,0),q(0,t),qx(0,t)}\{q(x,0),q(0,t),q_{x}(0,t) \} are given for the KdVI and KdVII equations, respectively, then one must construct the unknown boundary values {qx(0,t),qxx(0,t)}\{q_{x}(0,t),q_{xx}(0,t) \} and {qxx(0,t)}\{q_{xx}(0,t) \}, respectively. We show that this can be achieved without solving for q(x,t)q(x,t) by analysing a certain ``global relation'' which couples the given initial and boundary conditions with the unknown boundary values, as well as with the function Φ(t)(t,k)\Phi^{(t)}(t,k), where Φ(t)\Phi^{(t)} satisifies the tt-part of the associated Lax pair evaluated at x=0x=0. Indeed, by employing a Gelfand--Levitan--Marchenko triangular representation for Φ(t)\Phi^{(t)}, the global relation can be solved \emph{explicitly} for the unknown boundary values in terms of the given initial and boundary conditions and the function Φ(t)\Phi^{(t)}. This yields the unknown boundary values in terms of a nonlinear Volterra integral equation.Comment: 21 pages, 3 figure

    Long-Time Asymptotics for Solutions of the NLS Equation with a Delta Potential and Even Initial Data

    Full text link
    We consider the one-dimensional focusing nonlinear Schr\"odinger equation (NLS) with a delta potential and even initial data. The problem is equivalent to the solution of the initial/boundary problem for NLS on a half-line with Robin boundary conditions at the origin. We follow the method of Bikbaev and Tarasov which utilizes a B\"acklund transformation to extend the solution on the half-line to a solution of the NLS equation on the whole line. We study the asymptotic stability of the stationary 1-soliton solution of the equation under perturbation by applying the nonlinear steepest-descent method for Riemann-Hilbert problems introduced by Deift and Zhou. Our work strengthens, and extends, earlier work on the problem by Holmer and Zworski

    A method for obtaining Darboux transformations

    Full text link
    In this paper we give a method to obtain Darboux transformations (DTs) of integrable equations. As an example we give a DT of the dispersive water wave equation. Using the Miura map, we also obtain the DT of the Jaulent-Miodek equation. \end{abstract

    Linear and nonlinear generalized Fourier transforms

    Full text link

    Schlesinger transformations of Painlevé II-V

    Get PDF
    The explicit form of the Schlesinger transformations for the second, third, fourth, and fifth Painlevé equations is given. © 1992 American Institute of Physics

    Synthesis, as Opposed to Separation, of Variables

    Get PDF
    Abstract. Every applied mathematician has used separation of variables. For a given boundary value problem (BVP) in two dimensions, the starting point of this powerful method is the separation of the given PDE into two ODEs. If the spectral analysis of either of these ODEs yields an appropriate transform pair, i.e., a transform consistent with the given boundary conditions, then the given BVP can be reduced to a BVP for an ODE. For simple BVPs it is straightforward to choose an appropriate transform and hence the spectral analysis can be avoided. In spite of its enormous applicability, this method has certain limitations. In particular, it requires the given domain, PDE, and boundary conditions to be separable, and also may not be applicable if the BVP is non-self-adjoint. Furthermore, it expresses the solution as either an integral or a series, neither of which are uniformly convergent on the boundary of the domain (for nonvanishing boundary conditions), which renders such expressions unsuitable for numerical computations. This paper describes a recently introduced transform method that can be applied to certain nonseparable and non-self-adjoint problems. Furthermore, this method expresses the solution as an integral in the complex plane that is uniformly convergent on the boundary of the domain. The startin

    First Colonization of a Spectral Outpost in Random Matrix Theory

    Full text link
    We describe the distribution of the first finite number of eigenvalues in a newly-forming band of the spectrum of the random Hermitean matrix model. The method is rigorously based on the Riemann-Hilbert analysis of the corresponding orthogonal polynomials. We provide an analysis with an error term of order N^(-2 h) where 1/h = 2 nu+2 is the exponent of non-regularity of the effective potential, thus improving even in the usual case the analysis of the pertinent literature. The behavior of the first finite number of zeroes (eigenvalues) appearing in the new band is analyzed and connected with the location of the zeroes of certain Freud polynomials. In general all these newborn zeroes approach the point of nonregularity at the rate N^(-h) whereas one (a stray zero) lags behind at a slower rate of approach. The kernels for the correlator functions in the scaling coordinate near the emerging band are provided together with the subleading term: in particular the transition between K and K+1 eigenvalues is analyzed in detail.Comment: 32 pages, 8 figures (typo corrected in Formula 4.13); some reference added and minor correction

    Versal deformations of a Dirac type differential operator

    Full text link
    If we are given a smooth differential operator in the variable x∈R/2πZ,x\in {\mathbb R}/2\pi {\mathbb Z}, its normal form, as is well known, is the simplest form obtainable by means of the \mbox{Diff}(S^1)-group action on the space of all such operators. A versal deformation of this operator is a normal form for some parametric infinitesimal family including the operator. Our study is devoted to analysis of versal deformations of a Dirac type differential operator using the theory of induced \mbox{Diff}(S^1)-actions endowed with centrally extended Lie-Poisson brackets. After constructing a general expression for tranversal deformations of a Dirac type differential operator, we interpret it via the Lie-algebraic theory of induced \mbox{Diff}(S^1)-actions on a special Poisson manifold and determine its generic moment mapping. Using a Marsden-Weinstein reduction with respect to certain Casimir generated distributions, we describe a wide class of versally deformed Dirac type differential operators depending on complex parameters

    Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole

    Full text link
    We solve a class of boundary value problems for the stationary axisymmetric Einstein equations corresponding to a disk of dust rotating uniformly around a central black hole. The solutions are given explicitly in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the absence of a black hole, they reduce to the Neugebauer-Meinel disk.Comment: 46 page
    • …
    corecore