We describe the distribution of the first finite number of eigenvalues in a
newly-forming band of the spectrum of the random Hermitean matrix model. The
method is rigorously based on the Riemann-Hilbert analysis of the corresponding
orthogonal polynomials. We provide an analysis with an error term of order
N^(-2 h) where 1/h = 2 nu+2 is the exponent of non-regularity of the effective
potential, thus improving even in the usual case the analysis of the pertinent
literature. The behavior of the first finite number of zeroes (eigenvalues)
appearing in the new band is analyzed and connected with the location of the
zeroes of certain Freud polynomials. In general all these newborn zeroes
approach the point of nonregularity at the rate N^(-h) whereas one (a stray
zero) lags behind at a slower rate of approach. The kernels for the correlator
functions in the scaling coordinate near the emerging band are provided
together with the subleading term: in particular the transition between K and
K+1 eigenvalues is analyzed in detail.Comment: 32 pages, 8 figures (typo corrected in Formula 4.13); some reference
added and minor correction