442 research outputs found

    Prescribing Hemodialysis or Hemodiafiltration: When One Size Does Not Fit All the Proposal of a Personalized Approach Based on Comorbidity and Nutritional Status

    Get PDF
    There is no simple way to prescribe hemodialysis. Changes in the dialysis population, improvements in dialysis techniques, and different attitudes towards the initiation of dialysis have influenced treatment goals and, consequently, dialysis prescription. However, in clinical practice prescription of dialysis still often follows a “one size fits all” rule, and there is no agreed distinction between treatment goals for the younger, lower-risk population, and for older, high comorbidity patients. In the younger dialysis population, efficiency is our main goal, as assessed by the demonstrated close relationship between depuration (tested by kinetic adequacy) and survival. In the ageing dialysis population, tolerance is probably a better objective: “good dialysis” should allow the patient to attain a stable metabolic balance with minimal dialysis-related morbidity. We would like therefore to open the discussion on a personalized approach to dialysis prescription, focused on efficiency in younger patients and on tolerance in older ones, based on life expectancy, comorbidity, residual kidney function, and nutritional status, with particular attention placed on elderly, high-comorbidity populations, such as the ones presently treated in most European centers. Prescription of dialysis includes reaching decisions on the following elements: dialysis modality (hemodialysis (HD) or hemodiafiltration (HDF)); type of membrane (permeability, surface); and the frequency and duration of sessions. Blood and dialysate flow, anticoagulation, and reinfusion (in HDF) are also briefly discussed. The approach described in this concept paper was developed considering the following items: nutritional markers and integrated scores (albumin, pre-albumin, cholesterol; body size, Body Mass Index (BMI), Malnutrition Inflammation Score (MIS), and Subjective Global Assessment (SGA)); life expectancy (age, comorbidity (Charlson Index), and dialysis vintage); kinetic goals (Kt/V, normalized protein catabolic rate (n-PCR), calcium phosphate, parathyroid hormone (PTH), beta-2 microglobulin); technical aspects including vascular access (fistula versus catheter, degree of functionality); residual kidney function and weight gain; and dialysis tolerance (intradialytic hypotension, post-dialysis fatigue, and subjective evaluation of the effect of dialysis on quality of life). In the era of personalized medicine, we hope the approach described in this concept paper, which requires validation but has the merit of providing innovation, may be a first step towards raising attention on this issue and will be of help in guiding dialysis choices that exploit the extraordinary potential of the present dialysis “menu”

    A computational analysis of atrial fibrillation effects on coronary perfusion across the different myocardial layers

    Get PDF
    Patients with atrial fibrillation (AF) may present ischemic chest pain in the absence of classical obstructive coronary disease. Among the possible causes, the direct hemodynamic effect exerted by the irregular arrhythmia has not been studied in detail. We performed a computational fluid dynamics analysis by means of a 1D-0D multiscale model of the entire human cardiovascular system, enriched by a detailed mathematical modeling of the coronary arteries and their downstream distal microcirculatory districts (subepicardial, midwall and subendocardial layers). Three mean ventricular rates were simulated (75, 100, 125 bpm) in both sinus rhythm (SR) and atrial fibrillation, and an inter-layer and inter-frequency analysis was conducted focusing on the ratio between mean beat-to-beat blood flow in AF compared to SR. Our results show that AF exerts direct hemodynamic consequences on the coronary microcirculation, causing a reduction in microvascular coronary flow particularly at higher ventricular rates; the most prominent reduction was seen in the subendocardial layers perfused by left coronary arteries (left anterior descending and left circumflex arteries)

    The Diet and Haemodialysis Dyad: Three Eras, Four Open Questions and Four Paradoxes. A Narrative Review, Towards a Personalized, Patient-Centered Approach

    Get PDF
    The history of dialysis and diet can be viewed as a series of battles waged against potential threats to patients’ lives. In the early years of dialysis, potassium was identified as “the killer”, and the lists patients were given of forbidden foods included most plant-derived nourishment. As soon as dialysis became more efficient and survival increased, hyperphosphatemia, was identified as the enemy, generating an even longer list of banned aliments. Conversely, the “third era” finds us combating protein-energy wasting. This review discusses four questions and four paradoxes, regarding the diet-dialysis dyad: are the “magic numbers” of nutritional requirements (calories: 30–35 kcal/kg; proteins > 1.2 g/kg) still valid? Are the guidelines based on the metabolic needs of patients on “conventional” thrice-weekly bicarbonate dialysis applicable to different dialysis schedules, including daily dialysis or haemodiafiltration? The quantity of phosphate and potassium contained in processed and preserved foods may be significantly different from those in untreated foods: what are we eating? Is malnutrition one condition or a combination of conditions? The paradoxes: obesity is associated with higher survival in dialysis, losing weight is associated with mortality, but high BMI is a contraindication for kidney transplantation; it is difficult to limit phosphate intake when a patient is on a high-protein diet, such as the ones usually prescribed on dialysis; low serum albumin is associated with low dialysis efficiency and reduced survival, but on haemodiafiltration, high efficiency is coupled with albumin losses; banning plant derived food may limit consumption of “vascular healthy” food in a vulnerable population. Tailored approaches and agreed practices are needed so that we can identify attainable goals and pursue them in our fragile haemodialysis populations

    Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach

    Get PDF
    Dialysis and nutrition are two sides of the same coin—dialysis depurates metabolic waste that is typically produced by food intake. Hence, dietetic restrictions are commonly imposed in order to limit potassium and phosphate and avoid fluid overload. Conversely, malnutrition is a major challenge and, albeit to differing degrees, all nutritional markers are associated with survival. Dialysis-related malnutrition has a multifactorial origin related to uremic syndrome and comorbidities but also to dialysis treatment. Both an insufficient dialysis dose and excessive removal are contributing factors. It is thus not surprising that dialysis alone, without proper nutritional management, often fails to be effective in combatting malnutrition. While composite indexes can be used to identify patients with poor prognosis, none is fully satisfactory, and the definitions of malnutrition and protein energy wasting are still controversial. Furthermore, most nutritional markers and interventions were assessed in hemodialysis patients, while hemodiafiltration and peritoneal dialysis have been less extensively studied. The significant loss of albumin in these two dialysis modalities makes it extremely difficult to interpret common markers and scores. Despite these problems, hemodialysis sessions represent a valuable opportunity to monitor nutritional status and prescribe nutritional interventions, and several approaches have been tried. In this concept paper, we review the current evidence on intradialytic nutrition and propose an algorithm for adapting nutritional interventions to individual patients

    Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes

    Get PDF
    The mechanical interlocking of molecular components can lead to the appearance of novel and unconventional properties and processes, with potential relevance for applications in nanoscience, sensing, catalysis, and materials science. We describe a [3]rotaxane in which the number of recognition sites available on the axle component can be changed by acid-base inputs, encompassing cases in which this number is larger, equal to, or smaller than the number of interlocked macrocycles. These species exhibit very different properties and give rise to a unique network of acid-base reactions that leads to a fine pKa tuning of chemically equivalent acidic sites. The rotaxane where only one station is available for two rings exhibits a rich coconformational dynamics, unveiled by an integrated experimental and computational approach. In this compound, the two crown ethers compete for the sole recognition site, but can also come together to share it, driven by the need to minimize free energy without evident inter-ring interactions

    Inhibited Al diffusion and growth roughening on Ga-coated Al (100)

    Full text link
    Ab initio calculations indicate that the ground state for Ga adsorption on Al (100) is on-surface with local unit coverage. On Ga-coated Al (100), the bridge diffusion barrier for Al is large, but the Al→\rightarrowGa {\it exchange barrier is zero}: the ensuing incorporation of randomly deposited Al's into the Ga overlayer realizes a percolation network, efficiently recoated by Ga atoms. Based on calculated energetics, we predict rough surface growth at all temperatures; modeling the growth by a random deposition model with partial relaxation, we find a power-law divergent roughness w∌t 0.07±0.02w\sim t^{\,0.07\pm0.02}.Comment: 4 pages RevTeX-twocolumn, no figures. to appear in Phys. Rev. Lett., July 199

    Topology of amorphous tetrahedral semiconductors on intermediate lengthscales

    Full text link
    Using the recently-proposed ``activation-relaxation technique'' for optimizing complex structures, we develop a structural model appropriate to a-GaAs which is almost free of odd-membered rings, i.e., wrong bonds, and possesses an almost perfect coordination of four. The model is found to be superior to structures obtained from much more computer-intensive tight-binding or quantum molecular-dynamics simulations. For the elemental system a-Si, where wrong bonds do not exist, the cost in elastic energy for removing odd-membered rings is such that the traditional continuous-random network is appropriate. Our study thus provides, for the first time, direct information on the nature of intermediate-range topology in amorphous tetrahedral semiconductors.Comment: 4 pages, Latex and 2 postscript figure
    • 

    corecore