229 research outputs found
Water Quality Impacts of Natural Riparian Grasses Part 1: Empirical Studies
Studies were conducted on the effectiveness of natural riparian grass buffer strips in removing sediment and ag chemicals from surface runoff. No till and conventional tillage erosion plots served as the sediment and chemical source area. Runoff from the plots was directed onto 15, 30, and 45 foot filter strips where the inflow and outflow concentrations and sediment size distributions. Trapping percentages for sediment and ag chemicals typically ranged near or above 90%. An evaluation was made of the distribution of trapped chemicals among infiltrated mass and mass stored in the surface layer and on plant surfaces. The analysis showed that most of the chemicals were trapped by infiltration onto the soil matrix
Impact of Riparian Grass Filter Strips on Surface-Water Quality
The effectiveness of natural riparian grass filter strips in removing sediment and agricultural chemicals from surface runoff was studied using no-tillage and conventional-tillage erosion plots. Runoff from the tillage plots was directed onto 4.57, 9.14, and 13.72 m (15, 30, and 45 ft.) length filter strips, where the inflow and outflow concentrations and sediment size distributions were measured. Trapping efficiencies for sediment and agricultural chemicals typically ranged near or above 90 percent, mainly because of high infiltration rates. The filters also significantly reduced peak discharge concentrations, which reduced the impact of sediment and agricultural chemicals on receiving surface waters
GeneLab: Scientific Partnerships and an Open-Access Database to Maximize Usage of Omics Data from Space Biology Experiments
NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASAs premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong interest of the scientific community in these data. To date GeneLab has partnered with multiple experiments including two plant (Arabidopsis thaliana) experiments, two mice experiments, and several microbe experiments. GeneLab optimized protocols in the rodent partnerships for maximum yield of RNA, DNA and protein from tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected on the ground. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and as well as yield terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space environments
Spin-Glass State in
Magnetic susceptibility, magnetization, specific heat and positive muon spin
relaxation (\musr) measurements have been used to characterize the magnetic
ground-state of the spinel compound . We observe a spin-glass
transition of the S=1/2 spins below characterized
by a cusp in the susceptibility curve which suppressed when a magnetic field is
applied. We show that the magnetization of depends on the
magnetic histo Well below , the muon signal resembles the dynamical
Kubo-Toyabe expression reflecting that the spin freezing process in results Gaussian distribution of the magnetic moments. By means of
Monte-Carlo simulati we obtain the relevant exchange integrals between the spins in this compound.Comment: 6 pages, 16 figure
- …