309 research outputs found

    Maximum likelihood sequence detection with closed-form metrics in OOK optical systems impaired by GVD and PMD

    Get PDF
    This paper thoroughly investigates the maximum-likelihood sequence detection (MLSD) receiver for the optical ON-OFF keying (OOK) channel in the presence of both polarization mode dispersion and group velocity dispersion (GVD). A reliable method is provided for computing the relevant performance for any possible value of the system parameters, with no constraint on the sampling rate. With one sample per bit time, a practically exact expression of the statistics of the received samples is found, and therefore the performance of a synchronous MLSD receiver is evaluated and compared with that of other electronic techniques such as combined feedforward and decision-feedback equalizers (FFE and DFE). It is also shown that the ultimate performance of electronic processing can be obtained by sampling the received signal at twice the bit rate. An approximate accurate closed-form expression of the receiver metrics is also identified, allowing for the implementation of a practically optimal MLSD receiver

    Uncovering Structure-Property Relationships in Push-Pull Chromophores: A Promising Route to Large Hyperpolarizability and Two-Photon Absorption

    Get PDF
    In this investigation, we report the first hyperpolarizabilities and two-photon absorption cross sections of a large series of 12 push–pull cationic chromophores. All of these dyes show a dipolar acceptor+–π–donor structure, where the nature of the donor and acceptor units and π-bridge was synthetically tuned to allow insightful comparisons among the molecules. The hyperpolarizability was obtained through a solvatochromic method, by exploiting the rare negative solvatochromism exhibited by the investigated compounds. The two-photon absorption cross sections were determined through two-photon excited fluorescence measurements by means of a tunable nanosecond laser system for sample excitation. The nonlinear optical properties were discussed relatively to the photoinduced intramolecular charge transfer occurring in these donor–acceptor systems, investigated by femtosecond transient absorption experiments. We found a strong increase in hyperpolarizability upon increasing the molecular conjugation. Unexpectedly, the hyperpolarizability is almost unaffected by an increase in donor/acceptor strength and intramolecular charge transfer degree. Differently, the two-photon absorption cross sections of these dyes are enhanced by an increase in both molecular conjugation and intramolecular charge transfer efficiency. Several recent literature works have reported at the same time scattered information about the hyperpolarizability and two-photon absorption of small organic molecules. Our investigation is, to the best of our knowledge, the first attempt to uncover detailed structure–property relationships for these two nonlinear optical properties. Our results represent a promising route to achieve large hyperpolarizability and two-photon absorption in push–pull dyes and may drive the design of new efficient nonlinear optical materials

    Robust multilevel coherent optical systems with linear processing at the receiver

    Get PDF
    This paper investigates optical coherent systems based on polarization multiplexing and high-order modulations such as phase-shift keying (PSK) signals and quadrature amplitude modulations (QAM). It is shown that a simple linear receiver processing is sufficient to perfectly demultiplex the two transmitted streams and to perfectly compensate for group velocity dispersion (GVD) and polarization mode dispersion (PMD). In addition, in the presence of a strong phase noise of the lasers at the transmitter and receiver, a symbol-by-symbol detector with decision feedback is able to considerably improve the receiver robustness with a limited complexity increase. We will also discuss the channel estimation and the receiver adaptivity to time-varying channel conditions as well as the problem of the frequency acquisition and tracking. Finally, a new two-dimensional (polarization/time) differential encoding rule is proposed to overcome a polarization-ambiguity problem. In the numerical results, the receiver performance will be assessed versus the receiver complexity

    Channel estimation algorithms for MLSD in optical communication systems

    Get PDF
    Maximum likelihood sequence detection represents the most efficient technique in the electrical domain to combat fiber impairments such as polarization-mode dispersion and group-velocity dispersion. In order to successfully apply this technique, it is mandatory to estimate some key channel parameters needed by the Viterbi processor.We propose a simple and effective solution based on the least-mean-square algorithm to perform such an estimation

    Timing Synchronization and Channel Estimation in Free-Space Optical OOK Communication Systems

    Get PDF
    Fast and reliable synchronization in free-space optical (FSO) communications is a crucial task that has received little attention so far. Since in these applications the data rate is much higher than in traditional radio-frequency (RF) systems, novel technological constraints may arise in the design of the synchronization algorithms, as for example the need to operate at symbol rate instead with an oversampled data stream. In this work, we consider an FSO link and investigate the problem of channel estimation, symbol timing recovery and frame detection using a known synch pattern. The modulation format is on-off keying (OOK) and the received signal is plagued by a mixture of thermal and shot noise. By applying the least-squares criterion, we derive a novel synchronization scheme that can jointly retrieve all the unknown parameters using symbol-spaced samples. Although designed without taking the noise statistics into account, the estimator performance is assessed in a realistic scenario where shot noise is present. Comparisons are made with the relevant Cramér-Rao bound for the joint estimation of the synchronization parameters and signal-dependent noise variances. Numerical simulations and complexity analysis indicate that the resulting scheme performs satisfactorily with an affordable processing load. Hence, it represents a promising solution for fast synchronization in high-speed FSO communications

    On-Off Pumping for Drag Reduction in a Turbulent Channel Flow

    Get PDF
    We show that the energy required by a turbulent flow to displace a given amount of fluid through a straight duct in a given time interval can be reduced by modulating in time the pumping power. The control strategy is hybrid: it is passive, as it requires neither a control system nor control energy, but it manipulates how pumping energy is delivered to the system (as in active techniques) to increase the pumping efficiency. Our control employs a temporally periodic pumping pattern, where a short and intense acceleration (in which the pumping system is on) followed by a longer deceleration (in which the pumping system is off) makes the flow alternately visit a quasi-laminar and a turbulent state. The computational study is for a plane channel flow, and employs direct numerical simulations, which present specific computational challenges, for example the highly varying instantaneous value of the Reynolds number, and the importance of discretisation effects. Particular care is devoted to a meaningful definition of drag reduction in the present context. The ability of the forcing to yield significant savings is demonstrated. Since only a small portion of the parameter space is investigated, the best performance of the control technique remains to be assessed

    Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid

    Full text link
    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved

    Effective method for Blind Adaptive CD Compensation and Estimation in a DSP-based Coherent Optical Systems

    Get PDF
    A blind adaptive chromatic dispersion compensation and estimation algorithm is proposed and experimentally validated. The method is based on a Frequency Domain Equalizer, a Time Domain Equalizer and an Optical Performance Monitoring in a loop configuration

    Diets supplemented with condensed and hydrolysable tannins affected rumen fatty acid profile and plasmalogen lipids, ammonia and methane production in an in vitro study

    Get PDF
    The livestock sector constitutes 14.5% of global green-house gas (GHG) emissions and soil and water pollution due to nitrogen excretion. Methane and nitrogen excretions in ruminants can be mitigated by specific feeding strategies, and tannins reduce methanogenesis and ammonia syntheses. In our study, two kinds of condensed tannins (Mimosa and Gambier) and two kinds of hydrolysable tannins (Chestnut and Tara) were added (4 g/100 g DM) to a basal feed (barley: 48 g/100 g DM, wheat bran: 23 g/100 g DM, dehydrated alfalfa hay:15 g/100 g DM, soybean meal: 10 g/100 g DM and molasses: 2 g/100 g DM), inoculated with rumen fluid and fermented for 24 h. The methane, ammonia, fatty acid and plasmalogen lipid profile were determined. The results confirmed that tannins are an important family of heterogeneous compounds whose effect on rumen metabolism is strongly linked to their different characteristics. Chestnut tannin extract was shown to be a good compromise. It improved the sustainability of ruminant rearing by decreasing methanogenesis (control feed 0.159 vs chestnut feed 0.137 mmol/L rumen fluid; p =.0326), ammonia production (control feed 248 vs chestnut feed 179 mg/L rumen fluid; p <.0001) and enhancing acetate synthesis (production rate: chestnut 68.68% vs 49.64% of control).HIGHLIGHTS Tannin extracts from trees and shrubs can be used to modulate rumen fermentation. The positive effect of chestnut tannin extract was demonstrated on methane and ammonia production. Tannins showed no protective action on C18:2 trans 11
    • …
    corecore