1,142 research outputs found
Thermodynamic stabilities of ternary metal borides: An ab initio guide for synthesizing layered superconductors
Density functional theory calculations have been used to identify stable
layered Li--B crystal structure phases derived from a recently proposed
binary metal-sandwich (MS) lithium monoboride superconductor. We show that the
MS lithium monoboride gains in stability when alloyed with electron-rich metal
diborides; the resulting ordered LiB ternary phases may form
under normal synthesis conditions in a wide concentration range of for a
number of group-III-V metals . In an effort to pre-select compounds with the
strongest electron-phonon coupling we examine the softening of the in-plane
boron phonon mode at in a large class of metal borides. Our results
reveal interesting general trends for the frequency of the in-plane boron
phonon modes as a function of the boron-boron bond length and the valence of
the metal. One of the candidates with a promise to be an MgB-type
superconductor, LiAlB, has been examined in more detail: according to
our {\it ab initio} calculations of the phonon dispersion and the
electron-phonon coupling , the compound should have a critical
temperature of K.Comment: 10 pages, 9 figures, submitted to PR
Spectra of Discrete Schr\"odinger Operators with Primitive Invertible Substitution Potentials
We study the spectral properties of discrete Schr\"odinger operators with
potentials given by primitive invertible substitution sequences (or by Sturmian
sequences whose rotation angle has an eventually periodic continued fraction
expansion, a strictly larger class than primitive invertible substitution
sequences). It is known that operators from this family have spectra which are
Cantor sets of zero Lebesgue measure. We show that the Hausdorff dimension of
this set tends to as coupling constant tends to . Moreover, we
also show that at small coupling constant, all gaps allowed by the gap labeling
theorem are open and furthermore open linearly with respect to .
Additionally, we show that, in the small coupling regime, the density of states
measure for an operator in this family is exact dimensional. The dimension of
the density of states measure is strictly smaller than the Hausdorff dimension
of the spectrum and tends to as tends to
Supervised versus unsupervised antimalarial treatment with six-dose artemether-lumefantrine: pharmacokinetic and dosage-related findings from a clinical trial in Uganda.
BACKGROUND: A six-dose antimalarial regimen of artemether-lumefantrine (A/L) may soon become one of the most widely used drug combination in Africa, despite possible constraints with adherence and poor absorption due to inadequate nutrition, and a lack of pharmacokinetic and effectiveness data. METHODS: Within a trial of supervised versus unsupervised A/L treatment in a stable Ugandan Plasmodium falciparum transmission setting, plasma lumefantrine concentrations were measured in a subset of patients on day 3 (C [lum]day3) and day 7 (C [lum]day7) post-inclusion. Predictors of lumefantrine concentrations were analysed to show how both C [lum]day7 and the weight-adjusted lumefantrine dose affect 28-day recrudescence and re-infection risks. The implications of these novel findings are discussed in terms of the emergence of lumefantrine-resistant strains in Africa. RESULTS: C [lum]day3 and C [lum]day7 distributions among 241 supervised and 238 unsupervised patients were positively skewed. Unsupervised treatment and decreasing weight-adjusted lumefantrine dose were negatively associated with C [lum]day3. Unsupervised treatment and decreasing age showed strong negative associations with C [lum]day7. Both models were poorly predictive (R-squared < 0.25). There were no recrudescences in either arm, but decreasing lumefantrine dose per Kg resulted in up to 13-fold higher adjusted risks of re-infection. Re-infections occurred only among patients with C [lum]day7 below 400 ng/mL (p < 0.001). CONCLUSION: Maintaining the present six-dose regimen and ensuring high adherence and intake are essential to maximize the public health benefits of this valuable drug combination
Organizational-level strategies with or without an activity tracker to reduce office workers' sitting time: Rationale and study design of a pilot cluster-randomized trial
Background: The office workplace is a key setting in which to address excessive sitting time and inadequate physical activity. One major influence on workplace sitting is the organizational environment. However, the impact of organizational-level strategies on individual level activity change is unknown. Further, the emergence of sophisticated, consumer-targeted wearable activity trackers that facilitate real-time self-monitoring of activity, may be a useful adjunct to support organizational-level strategies, but to date have received little evaluation in this workplace setting. Objective: The aim of this study is to evaluate the feasibility, acceptability, and effectiveness of organizational-level strategies with or without an activity tracker on sitting, standing, and stepping in office workers in the short (3 months, primary aim) and long-term (12 months, secondary aim). Methods: This study is a pilot, cluster-randomized trial (with work teams as the unit of clustering) of two interventions in office workers: organizational-level support strategies (eg, visible management support, emails) or organizational-level strategies plus the use of a waist-worn activity tracker (the LUMOback) that enables self-monitoring of sitting, standing, and stepping time and enables users to set sitting and posture alerts. The key intervention message is to ‘Stand Up, Sit Less, and Move More.’ Intervention elements will be implemented from within the organization by the Head of Workplace Wellbeing. Participants will be recruited via email and enrolled face-to-face. Assessments will occur at baseline, 3, and 12 months. Time spent sitting, sitting in prolonged (≥30 minute) bouts, standing, and stepping during work hours and across the day will be measured with activPAL3 activity monitors (7 days, 24 hours/day protocol), with total sitting time and sitting time during work hours the primary outcomes. Web-based questionnaires, LUMOback recorded data, telephone interviews, and focus groups will measure the feasibility and acceptability of both interventions and potential predictors of behavior change. Results: Baseline and follow-up data collection has finished. Results are expected in 2016. Conclusions: This pilot, cluster-randomized trial will evaluate the feasibility, acceptability, and effectiveness of two interventions targeting reductions in sitting and increases in standing and stepping in office workers. Few studies have evaluated these intervention strategies and this study has the potential to contribute both short and long-term findings
Multi-instrument observations of the effects of a solar wind pressure pulse on the high latitude ionosphere : a detailed case study of a geomagnetic sudden impulse
Funding: ARF was supported by an STFC studentship, Science Foundation Ireland Grant 18/FRL/6199, and an Irish Research Council Government of Ireland Postdoctoral Fellowship GOIPD/2022/782. ML, TKY, and SEM acknowledge support from the Science and Technology Facilities Council, UKRI, grant no. ST/W00089X/1. JAC is supported by Royal Society grant DHF\R1\211068. HKS was supported by an STFC studentship. TE was supported by a Leverhulme Trust Early Career Fellowship (ECF-2019-155), the University of Leicester and the University of Glasgow. SJW was supported by NERC studentship NE/L002493/1. MKJ was supported by STFC Grant ST/W00089X/1. JML was supported by the Irish Research Council. LJP was supported by AFOSR MURI Award 26-0201-51-62.The effects of a solar wind pressure pulse on the terrestrial magnetosphere have been observed in detail across multiple datasets. The communication of these effects into the magnetosphere is known as a positive geomagnetic sudden impulse (+SI), and are observed across latitudes and different phenomena to characterise the propagation of +SI effects through the magnetosphere. A superposition of Alfvén and compressional propagation modes are observed in magnetometer signatures, with the dominance of these signatures varying with latitude. For the first time, collocated lobe reconnection convection vortices and region 0 field aligned currents are observed preceding the +SI onset, and an enhancement of these signatures is observed as a result of +SI effects. Finally, cusp auroral emission is observed collocated with the convection and current signatures. For the first time, simultaneous observations across multiple phenomena are presented to confirm models of +SI propagation presented previously.Publisher PDFPeer reviewe
Knotting probabilities after a local strand passage in unknotted self-avoiding polygons
We investigate the knotting probability after a local strand passage is
performed in an unknotted self-avoiding polygon on the simple cubic lattice. We
assume that two polygon segments have already been brought close together for
the purpose of performing a strand passage, and model this using Theta-SAPs,
polygons that contain the pattern Theta at a fixed location. It is proved that
the number of n-edge Theta-SAPs grows exponentially (with n) at the same rate
as the total number of n-edge unknotted self-avoiding polygons, and that the
same holds for subsets of n-edge Theta-SAPs that yield a specific
after-strand-passage knot-type. Thus the probability of a given
after-strand-passage knot-type does not grow (or decay) exponentially with n,
and we conjecture that instead it approaches a knot-type dependent amplitude
ratio lying strictly between 0 and 1. This is supported by critical exponent
estimates obtained from a new maximum likelihood method for Theta-SAPs that are
generated by a composite (aka multiple) Markov Chain Monte Carlo BFACF
algorithm. We also give strong numerical evidence that the after-strand-passage
knotting probability depends on the local structure around the strand passage
site. Considering both the local structure and the crossing-sign at the strand
passage site, we observe that the more "compact" the local structure, the less
likely the after-strand-passage polygon is to be knotted. This trend is
consistent with results from other strand-passage models, however, we are the
first to note the influence of the crossing-sign information. Two measures of
"compactness" are used: the size of a smallest polygon that contains the
structure and the structure's "opening" angle. The opening angle definition is
consistent with one that is measurable from single molecule DNA experiments.Comment: 31 pages, 12 figures, submitted to Journal of Physics
Inclusion at Scale: Deploying a Community-Driven Moderation Intervention on Twitch
Harassment, especially of marginalized individuals, on networked gaming and social media platforms has been identified as a significant issue, yet few HCI practitioners have attempted to create interventions tackling toxicity online. Aligning ourselves with the growing cohort of design activists, we present a case study of the GLHF pledge, an interactive public awareness campaign promoting positivity in video game live streaming. We discuss the design and deployment of a community-driven moderation intervention for GLHF, intended to empower the inclusive communities emerging on Twitch. After offering a preliminary report on the effects we have observed based on the more than 370,000 gamers who have participated to date, the paper concludes with a reflection on the challenges and opportunities of using design activism to positively intervene in large-scale media platforms
The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of
endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed
Architectures of control in consumer product design
Copyright @ 2005 Social Services Research GroupThe idea of architectures of control is introduced through examples ranging from urban planning to digital rights management, and the intentions behind their use in consumer products are examined, with reference to case studies of printer cartridges and proposed 'optimum lifetime products.' The reactions of the technical community and consumers themselves are also explored, along with some wider implications for society
- …