197 research outputs found

    Visual Impairment/Increased Intracranial Pressure (VIIP): Layman's Summary

    Get PDF
    To date NASA has documented that seven long duration astronauts have experienced in-flight and post-flight changes in vision and eye anatomy including degraded distant vision, swelling of the back of the eye, and changes in the shape of the globe. We have also documented in a few of these astronauts post-flight, increases in the pressure of the fluid that surrounds the brain and spinal cord. This is referred to as increased intracranial pressure (ICP). The functional and anatomical changes have varied in severity and duration. In the post-flight time period, some individuals have experienced a return to a pre-flight level of visual function while others have experienced changes that remain significantly altered compared to pre-flight. In addition, the increased ICP also persists in the post-flight time period. Currently, the underlying cause or causes of these changes is/are unknown but the spaceflight community at NASA suspects that the shift of blood toward the head and the changes in physiology that accompany it, such as increased intracranial pressure, play a significant role

    Assessment of Prone Positioning of Restrained, Seated Crewmembers in a Post Landing Stable 2 Orion Configuration

    Get PDF
    During the Orion landing and recovery subsystem design review, June 2009, it was noted that the human system and various vehicle systems, the environmental control and life support (ECLSS) and guidance, navigation and control (GN&C) systems for example, are negatively affected by Orion assuming a stable 2 (upside down; Figure A) configuration post landing. The stable 2 configuration is predicted to occur about 50% of the time based on Apollo landing data and modeling of the current capsule. The stable 2 configuration will be countered by an active up-righting system (crew module up-righting system; CMUS). Post landing balloons will deploy and inflate causing the vehicle to assume or maintain the stable 1 (up-right; Figure B) configuration. During the design review it was proposed that the up-righting system could be capable of righting the vehicle within 60 seconds. However, this time limit posed a series of constraints on the design which made it less robust than desired. The landing and recovery subsystem team requested an analysis of Orion vehicle systems as well as the human system with regard to the effect of stable 2 in order to determine if an up-righting response time greater than 60 seconds could be tolerated. The following report focuses on the assessment of the human system in the posture assumed when Orion is in the stable 2 configuration. Stable 2 will place suited, seated, and restrained crewmembers in a prone (facedown), head-up position for a period of time dependent on the functionality of the up-righting systems, ability of the crew to release themselves from the seat and restraints, and/or time to arrival of rescue forces. Given that the Orion seat and restraint system design is not complete and therefore, not available for evaluation, Space Medicine assessed how long a healthy but deconditioned crewmember could stay in this prone, restrained position and the physiological consequences of this posture by researching terrestrial analogs and considered the known physiological alterations and deconditioning experienced by long duration crewmembers

    Human Adaptation to Space: Space Physiology and Countermeasures

    Get PDF
    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data

    From Shuttle Main Engine to the Human Heart: A Presentation to the Federal Lab Consortium for Technology Transfer

    Get PDF
    A NASA engineer received a heart transplant performed by Drs. DeBakey and Noon after suffering a serious heart attack. 6 months later that engineer returned to work at NASA determined to use space technology to help people with heart disease. A relationship between NASA and Drs. DeBakey and Noon was formed and the group worked to develop a low cost, low power implantable ventricular assist device (VAD). NASA patented the method to reduce pumping damage to red blood cells and the design of a continuous flow heart pump (#5,678,306 and #5,947,892). The technology and methodology were licensed exclusively to MicroMed Technology, Inc.. In late 1998 MicroMed received international quality and electronic certifications and began clinical trials in Europe. Ventricular assist devices were developed to bridge the gap between heart failure and transplant. Early devices were cumbersome, damaged red blood cells, and increased the risk of developing dangerous blood clots. Application emerged from NASA turbopump technology and computational fluid dynamics analysis capabilities. To develop the high performance required of the Space Shuttle main engines, NASA pushed the state of the art in the technology of turbopump design. NASA supercomputers and computational fluid dynamics software developed for use in the modeling analysis of fuel and oxidizer flow through rocket engines was used in the miniaturization and optimization of a very small heart pump. Approximately 5 million people worldwide suffer from chronic heart failure at a cost of 40 billion dollars In the US, more than 5000 people are on the transplant list and less than 3000 transplants are performed each year due to the lack of donors. The success of ventricular assist devices has led to an application as a therapeutic destination as well as a bridge to transplant. This success has been attributed to smaller size, improved efficiency, and reduced complications such as the formation of blood clots and infection
    corecore