3,339 research outputs found

    Financial crises, unconventional monetary policy exit strategies, and agents' expectations

    Get PDF
    This paper considers a model with financial frictions and studies the role of expectations and unconventional monetary policy response to financial crises. During a financial crisis, the financial sector has reduced ability to provide credit to productive firms, and the central bank may help lessen the magnitude of the downturn by using unconventional monetary policy to inject liquidity into credit markets. The model allows parameters to change according to a Markov process, which gives agents in the economy expectation about the probability of the central bank intervening in response to a crises, as well as expectations about the central bank's exit strategy post-crises. Using this Markov regime switching specification, the paper addresses three issues. First, it considers the effects of different exit strategies, and shows that, after a crisis, if the central bank sells off its accumulated assets too quickly, the economy can experience a double-dip recession. Second, it analyzes the effects of expectations of intervention policy on pre-crises behavior. In particular, if the central bank increases the probability of intervening during crises, this increase leads to a loss of output in pre-crisis times. Finally, the paper considers the welfare implications of guaranteeing intervention during crises, and shows that providing a guarantee can raise or lower welfare depending upon the exit strategy used, and that committing before a crisis can be welfare decreasing but then welfare increasing once a crisis occurs.

    Emergence of junction dynamics in a strongly interacting Bose mixture

    Get PDF
    We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry of the trap. We observe non-trivial dynamics when the repulsion between the impurity and the background is dominant. In this regime, the system exhibits oscillations that resemble the dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement in the tunneling as compared to the single-well case.Comment: 20 pages, 9 figure

    Dynamical realization of magnetic states in a strongly interacting Bose mixture

    Get PDF
    We describe the dynamical preparation of magnetic states in a strongly interacting two-component Bose gas in a harmonic trap. By mapping this system to an effective spin chain model, we obtain the dynamical spin densities and the fidelities for a few-body system. We show that the spatial profiles transit between ferromagnetic and antiferromagnetic states as the intraspecies interaction parameter is slowly increased.Comment: 6 pages, 7 figure

    Bethe ansatz solution of the anisotropic correlated electron model associated with the Temperley-Lieb algebra

    Full text link
    A recently proposed strongly correlated electron system associated with the Temperley-Lieb algebra is solved by means of the coordinate Bethe ansatz for periodic and closed boundary conditions.Comment: 21 page

    Realizing time crystals in discrete quantum few-body systems

    Get PDF
    The exotic phenomenon of time translation symmetry breaking under periodic driving - the time crystal - has been shown to occur in many-body systems even in clean setups where disorder is absent. In this work, we propose the realization of time-crystals in few-body systems, both in the context of trapped cold atoms with strong interactions and of a circuit of superconducting qubits. We show how these two models can be treated in a fairly similar way by adopting an effective spin chain description, to which we apply a simple driving protocol. We focus on the response of the magnetization in the presence of imperfect pulses and interactions, and show how the results can be interpreted, in the cold atomic case, in the context of experiments with trapped bosons and fermions. Furthermore, we provide a set of realistic parameters for the implementation of the superconducting circuit.Comment: 6 pages, 4 figure

    Magnetic Susceptibility of an integrable anisotropic spin ladder system

    Full text link
    We investigate the thermodynamics of a spin ladder model which possesses a free parameter besides the rung and leg couplings. The model is exactly solved by the Bethe Ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. A connection with the compounds KCuCl3, Cu2(C5H12N2)2Cl4 and (C5H12N)2CuBr4 in the strong coupling regime is made and our results for the magnetic susceptibility fit the experimental data remarkably well.Comment: 12 pages, 12 figures included, submitted to Phys. Rev.

    Universality class of quantum criticality for strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    Get PDF
    Using the thermodynamic Bethe ansatz equations we study the quantum phase diagram, thermodynamics and criticality of one-dimensional spin-1 bosons with strongly repulsive density-density and antiferromagnetic spin-exchange interactions. We analytically derive a high precision equation of state from which the Tomonaga-Luttinger liquid physics and quantum critical behavior of the system are computed. We obtain explicit forms for the scaling functions near the critical points yielding the dynamical exponent z=2z=2 and correlation length exponent ν=1/2\nu=1/2 for the quantum phase transitions driven by either the chemical potential or the magnetic field. Consequently, we further demonstrate that quantum criticality of the system can be mapped out from the finite temperature density and magnetization profiles of the 1D trapped gas. Our results provide the physical origin of quantum criticality in a 1D many-body system beyond the Tomonaga-Luttinger liquid description.Comment: 12 pages, 11 figure

    Classical and quantum dynamics of a model for atomic-molecular Bose--Einstein condensates

    Get PDF
    We study a model for a two-mode atomic-molecular Bose--Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.Comment: 13 pages, 7 eps figure

    A planar extrapolation of the correlation problem that permits pairing

    Full text link
    It was observed previously that an SU(N) extension of the Hubbard model is dominated, at large N, by planar diagrams in the sense of 't Hooft, but the possibility of superconducting pairing got lost in this extrapolation. To allow for this possibility, we replace SU(N) by U(N,q), the unitary group in a vector space of quaternions. At the level of the free energy, the difference between the SU(N)and U(N,q) extrapolations appears only to first nonleading order in N.Comment: 8 pages, 2 figure
    • …
    corecore