57 research outputs found

    Variation in righting times of holothuria atra, stichopus chloronotus, and holothuria edulis in response to increased seawater temperatures on heron reef in the southern GBR

    Get PDF
    Sea cucumbers can mitigate some impacts of climate change through digestion of benthic sands and production of calcium carbonate. The projected ecological benefits of sea cucumbers in warmer, more acidic oceans are contingent on the capacities of individuals to acclimate and populations to adapt to climatic changes. The goal of this experiment was to evaluate the degree to which warming waters would impact three abundant species of sea cucumbers on the Heron Reef in Queensland, Australia. We conducted a behavioral assay using three species of sea cucumbers, Holothuria atra, Stichopus chloronotus, and Holothuria edulis. Individuals from each species were subjected to three conditions mimicking current summer temperatures, current winter temperatures, and an elevated temperature consistent with future ocean warming by the year 2100. Sea cucumber reactions were evaluated using righting time as a proxy for their stress levels and overall tolerance of warming events. The three sea cucumber species reacted differently to water temperature changes: H. atra\u27s righting times declined with temperature, S. chloronotus had greater righting times at high and low temperature extremes, and H. edulis\u27s righting times remained relatively constant throughout. Our results suggest that each of these species might respond differently to ocean warming and while some may be able to continue to combat climate change in benthic communities, others may decline in ecological function

    Discovery of the Largest Orbweaving Spider Species: The Evolution of Gigantism in Nephila

    Get PDF
    More than 41,000 spider species are known with about 400-500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19(th) century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae.We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics.Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional

    Sexual Cannibalism: High Incidence in a Natural Population with Benefits to Females

    Get PDF
    10 pages, 3 figures.[Background] Sexual cannibalism may be a form of extreme sexual conflict in which females benefit more from feeding on males than mating with them, and males avoid aggressive, cannibalistic females in order to increase net fitness. A thorough understanding of the adaptive significance of sexual cannibalism is hindered by our ignorance of its prevalence in nature. Furthermore, there are serious doubts about the food value of males, probably because most studies that attempt to document benefits of sexual cannibalism to the female have been conducted in the laboratory with non-natural alternative prey. Thus, to understand more fully the ecology and evolution of sexual cannibalism, field experiments are needed to document the prevalence of sexual cannibalism and its benefits to females.[Methodology/Principal Findings] We conducted field experiments with the Mediterranean tarantula (Lycosa tarantula), a burrowing wolf spider, to address these issues. At natural rates of encounter with males, approximately a third of L. tarantula females cannibalized the male. The rate of sexual cannibalism increased with male availability, and females were more likely to kill and consume an approaching male if they had previously mated with another male. We show that females benefit from feeding on a male by breeding earlier, producing 30% more offspring per egg sac, and producing progeny of higher body condition. Offspring of sexually cannibalistic females dispersed earlier and were larger later in the season than spiderlings of non-cannibalistic females.[Conclusions/Significance] In nature a substantial fraction of female L. tarantula kill and consume approaching males instead of mating with them. This behaviour is more likely to occur if the female has mated previously. Cannibalistic females have higher rates of reproduction, and produce higher-quality offspring, than non-cannibalistic females. Our findings further suggest that female L. tarantula are nutrient-limited in nature and that males are high-quality prey. The results of these field experiments support the hypothesis that sexual cannibalism is adaptive to females.This paper has been written under a Ramón y Cajal research contract from the Spanish Ministry of Science and Technology (MCYT) to JML and an I3P-BPD2004-CSIC scholarship to RRB. This work has been funded by MEC grants CGL2004-03153 and CGL2007-60520 to JML, MARG, RRB, CFM and DHW.Peer reviewe

    Gravity still matters

    No full text

    Proximate Causes of Rensch’s Rule: Does Sexual Size Dimorphism in Arthropods Result from Sex Differences in Development Time?

    Full text link
    A prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch’s rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch’s rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch’s rule. Furthermore, we found only a weak positive relationship between SSD and SBM overall, suggesting that growth rate differences between the sexes are more important than development time differences in proximately mediating SSD in a wide but by no means comprehensive range of arthropod taxa. Except when protandry is of selective advantage (as in many butterflies, Hymenoptera, and spiders), male development time was equal to (in water striders and beetles) or even longer than (in drosophilid and sepsid flies) that of females. Because all taxa show female-biased SSD, this implies faster growth of females in general, a pattern markedly different from that of primates and birds (analyzed here for comparison). We discuss three potential explanations for this pattern based on life-history trade-offs and sexual selection
    corecore