21 research outputs found

    Strongly interacting neutrinos as the highest energy cosmic rays

    Get PDF
    We show that all features of the ultrahigh energy cosmic ray spectrum from 10^{17} eV to 10^{21} eV can be described with a simple power-like injection spectrum of protons under the assumption that the neutrino-nucleon cross-section is significantly enhanced at center of mass energies above \approx 100 TeV. In our scenario, the cosmogenic neutrinos produced during the propagation of protons through the cosmic microwave background initiate air showers in the atmosphere, just as the protons. The total air shower spectrum induced by protons and neutrinos shows excellent agreement with the observations. A particular possibility for a large neutrino-nucleon cross-section exists within the Standard Model through electroweak instanton-induced processes.Comment: 8 pages, 4 figures, talk given at Beyond the Desert '03, Castle Ringberg, 9-14 June, 200

    Axion cosmology, lattice QCD and the dilute instanton gas

    Get PDF
    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T)\chi(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T)\chi(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.Comment: 9 pages, 7 figure

    Determination of absolute neutrino masses from Z-bursts

    Get PDF
    Ultrahigh energy neutrinos (UHE\nu) scatter on relic neutrinos (R\nu) producing Z bosons, which can decay hadronically producing protons (Z-burst). We compare the predicted proton spectrum with the observed ultrahigh energy cosmic ray (UHECR) spectrum and determine the mass of the heaviest R\nu via a maximum likelihood analysis. Our prediction depends on the origin of the power-like part of the UHECR spectrum: m_\nu=2.75^{+1.28}_{-0.97} eV for Galactic halo and 0.26^{+0.20}_{-0.14} eV for extragalactic (EG) origin. The necessary UHE\nu flux should be detected in the near future.Comment: slight rewording, revised neutrino fluxes, conclusions unchanged, version to appear in Phys. Rev. Let

    Bounds on the cosmogenic neutrino flux

    Full text link
    Under the assumption that some part of the observed highest energy cosmic rays consists of protons originating from cosmological distances, we derive bounds on the associated flux of neutrinos generated by inelastic processes with the cosmic microwave background photons. We exploit two methods. First, a power-like injection spectrum is assumed. Then, a model-independent technique, based on the inversion of the observed proton flux, is presented. The inferred lower bound is quite robust. As expected, the upper bound depends on the unknown composition of the highest energy cosmic rays. Our results represent benchmarks for all ultrahigh energy neutrino telescopes.Comment: 12 pages, 6 figure

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX

    Upper Bounds on the Neutrino-Nucleon Inelastic Cross Section

    Full text link
    Extraterrestrial neutrinos can initiate deeply developing air showers, and those that traverse the atmosphere unscathed may produce cascades in the ice or water. Up to now, no such events have been observed. This can be translated into upper limits on the diffuse neutrino flux. On the other hand, the observation of cosmic rays with primary energies > 10^{10} GeV suggests that there is a guaranteed flux of cosmogenic neutrinos, arising from the decay of charged pions (and their muon daughters) produced in proton interactions with the cosmic microwave background. In this work, armed with these cosmogenic neutrinos and the increased exposure of neutrino telescopes we bring up-to-date model-independent upper bounds on the neutrino-nucleon inelastic cross section. Uncertainties in the cosmogenic neutrino flux are discussed and taken into account in our analysis. The prospects for improving these bounds with the Pierre Auger Observatory are also estimated. The unprecedented statistics to be collected by this experiment in 6 yr of operation will probe the neutrino-nucleon inelastic cross section at the level of Standard Model predictions.Comment: To be published in JCA

    Dark Energy from Mass Varying Neutrinos

    Full text link
    We show that mass varying neutrinos (MaVaNs) can behave as a negative pressure fluid which could be the origin of the cosmic acceleration. We derive a model independent relation between the neutrino mass and the equation of state parameter of the neutrino dark energy, which is applicable for general theories of mass varying particles. The neutrino mass depends on the local neutrino density and the observed neutrino mass can exceed the cosmological bound on a constant neutrino mass. We discuss microscopic realizations of the MaVaN acceleration scenario, which involve a sterile neutrino. We consider naturalness constraints for mass varying particles, and find that both ev cutoffs and ev mass particles are needed to avoid fine-tuning. These considerations give a (current) mass of order an eV for the sterile neutrino in microscopic realizations, which could be detectable at MiniBooNE. Because the sterile neutrino was much heavier at earlier times, constraints from big bang nucleosynthesis on additional states are not problematic. We consider regions of high neutrino density and find that the most likely place today to find neutrino masses which are significantly different from the neutrino masses in our solar system is in a supernova. The possibility of different neutrino mass in different regions of the galaxy and the local group could be significant for Z-burst models of ultra-high energy cosmic rays. We also consider the cosmology of and the constraints on the ``acceleron'', the scalar field which is responsible for the varying neutrino mass, and briefly discuss neutrino density dependent variations in other constants, such as the fine structure constant.Comment: 26 pages, 3 figures, refs added, typos corrected, comment added about possible matter effect

    Astrophysical Origins of Ultrahigh Energy Cosmic Rays

    Full text link
    In the first part of this review we discuss the basic observational features at the end of the cosmic ray energy spectrum. We also present there the main characteristics of each of the experiments involved in the detection of these particles. We then briefly discuss the status of the chemical composition and the distribution of arrival directions of cosmic rays. After that, we examine the energy losses during propagation, introducing the Greisen-Zaptsepin-Kuzmin (GZK) cutoff, and discuss the level of confidence with which each experiment have detected particles beyond the GZK energy limit. In the second part of the review, we discuss astrophysical environments able to accelerate particles up to such high energies, including active galactic nuclei, large scale galactic wind termination shocks, relativistic jets and hot-spots of Fanaroff-Riley radiogalaxies, pulsars, magnetars, quasar remnants, starbursts, colliding galaxies, and gamma ray burst fireballs. In the third part of the review we provide a brief summary of scenarios which try to explain the super-GZK events with the help of new physics beyond the standard model. In the last section, we give an overview on neutrino telescopes and existing limits on the energy spectrum and discuss some of the prospects for a new (multi-particle) astronomy. Finally, we outline how extraterrestrial neutrino fluxes can be used to probe new physics beyond the electroweak scale.Comment: Higher resolution version of Fig. 7 is available at http://www.angelfire.com/id/dtorres/down3.html. Solicited review article prepared for Reports on Progress in Physics, final versio
    corecore