48 research outputs found

    Worldline Monte Carlo for fermion models at large N_f

    Full text link
    Strongly-coupled fermionic systems can support a variety of low-energy phenomena, giving rise to collective condensation, symmetry breaking and a rich phase structure. We explore the potential of worldline Monte Carlo methods for analyzing the effective action of fermionic systems at large flavor number N_f, using the Gross-Neveu model as an example. Since the worldline Monte Carlo approach does not require a discretized spacetime, fermion doubling problems are absent, and chiral symmetry can manifestly be maintained. As a particular advantage, fluctuations in general inhomogeneous condensates can conveniently be dealt with analytically or numerically, while the renormalization can always be uniquely performed analytically. We also critically examine the limitations of a straightforward implementation of the algorithms, identifying potential convergence problems in the presence of fermionic zero modes as well as in the high-density region.Comment: 40 pages, 13 figure

    A calculation of the QCD phase diagram at finite temperature, and baryon and isospin chemical potentials

    Full text link
    We study the phases of a two-flavor Nambu-Jona-Lasinio model at finite temperature TT, baryon and isospin chemical potentials: μB=(μu+μd)/2\mu_{B}=(\mu_{u}+\mu_{d})/2, μI=(μuμd)/2\mu_{I}=(\mu_{u}-\mu_{d})/2. This study completes a previous analysis where only small isospin chemical potentials μI\mu_{I} were consideredComment: 21 pages, 13 figures included, two more refernces adde

    The QCD thermal phase transition in the presence of a small chemical potential

    Get PDF
    We propose a new method to investigate the thermal properties of QCD with a small quark chemical potential μ\mu. Derivatives of the phase transition point with respect to μ\mu are computed at μ=0\mu=0 for 2 flavors of p-4 improved staggered fermions with ma=0.1,0.2ma=0.1,0.2 on a 163×416^3\times4 lattice. The resulting Taylor expansion is well behaved for the small values of μq/Tc0.1\mu_{\rm q}/T_c\sim0.1 relevant for RHIC phenomenology, and predicts a critical curve Tc(μ)T_c(\mu) in reasonable agreement with estimates obtained using exact reweighting. In addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of μ0\mu\not=0 on the equation of state, and comment on the complex phase of the fermion determinant in QCD with μ0\mu\not=0.Comment: 26 pages, 25 figures, minor modificatio

    Shear viscosity of the Quark-Gluon Plasma from a virial expansion

    Full text link
    We calculate the shear viscosity η\eta in the quark-gluon plasma (QGP) phase within a virial expansion approach with particular interest in the ratio of η\eta to the entropy density ss, i.e. η/s\eta/s. The virial expansion approach allows us to include the interactions between the partons in the deconfined phase and to evaluate the corrections to a single-particle partition function. In the latter approach we start with an effective interaction with parameters fixed to reproduce thermodynamical quantities of QCD such as energy and/or entropy density. We also directly extract the effective coupling \ga_{\rm V} for the determination of η\eta. Our numerical results give a ratio η/s0.097\eta/s\approx 0.097 at the critical temperature TcT_{\rm c}, which is very close to the theoretical bound of 1/(4π)1/(4\pi). Furthermore, for temperatures T1.8TcT\leq 1.8 T_{\rm c} the ratio η/s\eta/s is in the range of the present experimental estimates 0.10.30.1-0.3 at RHIC. When combining our results for η/s\eta/s in the deconfined phase with those from chiral perturbation theory or the resonance gas model in the confined phase we observe a pronounced minimum of η/s\eta/s close to the critical temperature TcT_{\rm c}.Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR

    Universality, the QCD critical/tricritical point and the quark number susceptibility

    Get PDF
    The quark number susceptibility near the QCD critical end-point (CEP), the tricritical point (TCP) and the O(4) critical line at finite temperature and quark chemical potential is investigated. Based on the universality argument and numerical model calculations we propose a possibility that the hidden tricritical point strongly affects the critical phenomena around the critical end-point. We made a semi-quantitative study of the quark number susceptibility near CEP/TCP for several quark masses on the basis of the Cornwall-Jackiw-Tomboulis (CJT) potential for QCD in the improved-ladder approximation. The results show that the susceptibility is enhanced in a wide region around CEP inside which the critical exponent gradually changes from that of CEP to that of TCP, indicating a crossover of different universality classes.Comment: 18 pages, 10 figure

    Spectral functions in the sigma-channel near the critical end point

    Get PDF
    Spectral functions in the σ\sigma-channel are investigated near the chiral critical end point (CEP), that is, the point where the chiral phase transition ceases to be first-ordered in the (μ,T)(\mu,T)-plane of the QCD phase diagram. At that point the σ\sigma meson becomes massless in spite of explicit breaking of the chiral symmetry. It is expected that experimental signatures peculiar to CEP can be observed through spectral changes in the presence of abnormally light σ\sigma mesons. As a candidate, the invariant-mass spectrum for diphoton emission is estimated with the chiral quark model incorporated. The results show the characteristic shape with a peak in the low energy region, which may serve as a signal for CEP. However, we find that the diphoton multiplicity is highly suppressed by infrared behaviors of the σ\sigma meson. Experimentally, in such a low energy region below the threshold of two pions, photons from π02γ\pi^0\to2\gamma are major sources of the background for the signal.Comment: 12 pages, 8 figures, 1 figure replaced, minor modification

    Relation between the Polyakov loop and the chiral order parameter at strong coupling

    Full text link
    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature by using the Gocksch-Ogilvie model with fundamental or adjoint quarks. The model is based on the double expansion of strong coupling and large dimensionality on the lattice. In an analytic way with the mean field approximation employed, we show that the confined phase must be accompanied by the spontaneous breaking of the chiral symmetry for both fundamental and adjoint quarks. Then we proceed to numerical analysis to look into the coupled dynamics of the Polyakov loop and the chiral order parameter. In the case of fundamental quarks, the pseudo-critical temperature inferred from the Polyakov loop behavior turns out to coincide with the pseudo-critical temperature of the chiral phase transition. We discuss the physical implication of the coincidence of the pseudo-critical temperatures in two extreme cases; one is the deconfinement dominance and the other is the chiral dominance. As for adjoint quarks, the deconfinement transition of first order persists and the chiral phase transition occurs distinctly at higher temperature than the deconfinement transition does. The present model study gives us a plausible picture to understand the results from the lattice QCD and aQCD simulations.Comment: 19 pages, 9 figures, to appear in Phys.Rev.D. Appendix A is modified; references are adde

    Salvage image-guided intensity modulated or stereotactic body reirradiation of local recurrence of prostate cancer

    Get PDF
    Objective: To retrospectively evaluate external beam reirradiation (re-EBRT) delivered to the prostate/prostatic bed for local recurrence, after radical or adjuvant/salvage radiotherapy (RT). Methods: 32 patients received re-EBRT between February 2008 and October 2013. All patients had clinical/radiological local relapse in the prostate or prostatic bed and no distant metastasis. re-EBRT was delivered with selective RT technologies [stereotactic RT including CyberKnifeTM (Accuray, Sunnyvale, CA); image-guidance and intensity-modulated RT etc.]. Toxicity was evaluated using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Biochemical control was assessed according to the Phoenix definition (NADIR12ngml-1). Results: Acute urinary toxicity: G0, 24 patients; G1, 6 patients; G2, 2 patients. Acute rectal toxicity: G0, 28 patients; G1, 2 patients; and G2, 1 patient. Late urinary toxicity (evaluated in 30 cases): G0, 23 patients; G1, 6 patients; G2, 1 patient. Late renal toxicity: G0, 25 patients; G1, 5 patients. A mean follow-up of 21.3months after re-EBRT showed that 13 patients were free of cancer, 3 were alive with biochemical relapse and 12 patients were alive with clinically evident disease. Four patients had died: two of disease progression and two of other causes. Conclusion: re-EBRT usingmodern technology is a feasible approach for local prostate cancer recurrence offering 2-year tumour control in about half of the patients. Toxicity of re-EBRT is low. Future studies are needed to identify the patients who would benefit most from this treatment. Advances in knowledge: Our series, based on experience in one hospital alone, shows that re-EBRT for local relapse of prostate cancer is feasible and offers a 2-year cure in about half of the patients
    corecore