128 research outputs found

    Vanadium pentoxide induces the secretion of CXCL9 and CXCL10 chemokines in thyroid cells

    Get PDF
    Vanadium is a grey metal, existing in different states of oxidation, whose most common form in commercial products is vanadium pentoxide (V2O5). All vanadium compounds have been considered toxic. A carcinogenic role of vanadium on the thyroid has recently been proposed. However no in vivo or in vitro studies have evaluated thyroid disruption in humans and/or animals after exposure to vanadium. In the present study we evaluate the effect of V2O5on proliferation, and chemokine secretion in normal thyrocytes. Our study demonstrated that V2O5has no effect on thyroid follicular cell viability or proliferation, but it is able to induce the secretion of T-helper (Th)1 chemokines into the thyroid, synergistically increasing the effect of important Th1 cytokines such as interferon (IFN)γ and tumor necrosis factor (TNF)α. Through this process, V2O5promotes the induction and perpetuation of an inflammatory reaction in the thyroid. Further studies are necessary to evaluate thyroid function, and nodules, in subjects occupationally exposed, or living in polluted areas

    CXCL8 and CXCL11 chemokine secretion in dermal fibroblasts is differentially modulated by vanadium pentoxide

    Get PDF
    An increase in skin rashes or atopic dermatitis has been observed in individuals working with vanadium. However, to the best of our knowledge no in vivo or in vitro studies have evaluated the effect of exposure to vanadium in dermal fibroblasts. Cells viability and proliferation were assessed by WST-1 assay, cells were treated with increasing concentrations of V2O5(1, 10 and 100 nM). CXCL8 and CXCL11 concentrations were measured in the supernatants using an ELISA assay. V2O5was not observed as having a significant effect on dermal fibroblast's viability and proliferation. However, it was revealed that V2O5was able to induce the secretion of CXCL8 and CXCL11 chemokines into dermal fibroblasts. V2O5synergistically increased the effect of interferon (IFN)? on CXCL11 secretion. In addition, V2O5synergistically increased the effect of the tumor necrosis factor a on CXCL8 secretion and abolished the inhibitory effect of IFN?. V2O5induction of CXCL8 and CXCL11 chemokines may lead to the appearance and perpetuation of an inflammatory reaction into the dermal tissue. Further studies are required to evaluate dermal integrity and manifestations in subjects occupationally exposed, or living in polluted areas

    Induction of Th1 chemokine secretion in dermal fibroblasts by vanadium pentoxide

    Get PDF
    Vanadium is a soft, silvery-grey metal with a number of different oxidation states. The most common commercial form of vanadium is vanadium pentoxide (V2O5). All vanadium compounds are considered toxic. An increase in skin rashes has been observed in certain vanadium workers, including the development of atopic dermatitis. However, to the best of our knowledge, no prior in vivo or in vitro studies have evaluated the effect of vanadium exposure in human dermal fibroblasts. The present study evaluated the effect of V2O5on proliferation and chemokine secretion in dermal fibroblasts. The results revealed that V2O5had no significant effect on the viability or proliferation of fibroblasts, however it was able to induce the secretion of T-helper (Th)1 chemokines from dermal fibroblasts, synergistically increasing the effect of important Th1 cytokines, including interferon-γ and tumor necrosis factor-α. Through these processes, V2O5may lead to the induction and perpetuation of an inflammatory reaction in dermal tissue. The induction and perpetuation of inflammation in the dermis and the variety of involved candidate genes may be at the base of V2O5-induced effects following occupational and environmental exposures. Further studies are necessary to evaluate dermal integrity and manifestations in subjects who are occupationally exposed, or living in polluted areas

    Evaluation of flu vaccination coverage among healthcare workers during a 3 years’ study period and attitude towards influenza and potential covid-19 vaccination in the context of the pandemic

    Get PDF
    (1) Background: vaccination of healthcare workers (HCWs) against seasonal influenza is considered the most effective way to protect HCWs, ensure patient’s safety and to maintain essential health care services during influenza epidemics. With the present study we aimed to evaluate the efficacy of incremental bundles of measures implemented during the last three flu campaigns and to assess the attitudes towards influenza vaccination and a potential vaccine against COVID-19 among HCWs, in a large university hospital in Pisa, Italy. (2) Methods: We described measures implemented during 2018/2019, 2019/2020 and 2020/2021 and assessed their impact on flu vaccine coverage (VC) among employees and residents in Pisa university hospital. We considered sex, profession and ward to investigate differences in uptake. In addition, in 2020 a survey was developed and distributed to all employees to evaluate flu and COVID-19 vaccines attitudes. (3) Results: during the 2018/19 and 2019/20 flu campaigns the overall VC rate among HCWs was, respectively, 10.2% and 11.9%. In 2020/21 the overall VC rate jumped to 39.3% (+230.6%). Results from the survey indicated a more positive attitude towards flu vaccine as compared to COVID-19 vaccines among the 10.6% of the staff members who responded to the survey. In addition, 70.97% of HCWs totally agreed that being vaccinated against influenza would be more important than the previous years because of COVID-19 emergency. (4) Conclusions: a significant increase in VC was observed in 2020/21, especially among those sub-groups with consistently lower uptake in previous years. The COVID-19 pandemic positively influenced flu vaccination uptake during the 2020/21 season

    Variation rs2235503 C > A Within the Promoter of MSLN Affects Transcriptional Rate of Mesothelin and Plasmatic Levels of the Soluble Mesothelin-Related Peptide

    Get PDF
    Soluble mesothelin-related peptide (SMRP) is a promising biomarker for malignant pleural mesothelioma (MPM), but several confounding factors can reduce SMRP-based test’s accuracy. The identification of these confounders could improve the diagnostic performance of SMRP. In this study, we evaluated the sequence of 1,000 base pairs encompassing the minimal promoter region of the MSLN gene to identify expression quantitative trait loci (eQTL) that can affect SMRP. We assessed the association between four MSLN promoter variants and SMRP levels in a cohort of 72 MPM and 677 non-MPM subjects, and we carried out in vitro assays to investigate their functional role. Our results show that rs2235503 is an eQTL for MSLN associated with increased levels of SMRP in non-MPM subjects. Furthermore, we show that this polymorphic site affects the accuracy of SMRP, highlighting the importance of evaluating the individual’s genetic background and giving novel insights to refine SMRP specificity as a diagnostic biomarker

    An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models

    Get PDF
    Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60-min transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery (PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and recovery in MCAO, whereas the promptness of external carotid artery retrograde flow recruitment together with PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally, different ischemic gradients shape microcollateral density and size

    Neuroimaging biomarkers predict brain structural connectivity change in a mouse model of vascular cognitive impairment

    Get PDF
    Background and Purpose - Chronic hypoperfusion in the mouse brain has been suggested to mimic aspects of vascular cognitive impairment, such as white matter damage. Although this model has attracted attention, our group has struggled to generate a reliable cognitive and pathological phenotype. This study aimed to identify neuroimaging biomarkers of brain pathology in aged, more severely hypoperfused mice. Methods - We used magnetic resonance imaging to characterize brain degeneration in mice hypoperfused by refining the surgical procedure to use the smallest reported diameter microcoils (160 μm). Results - Acute cerebral blood flow decreases were observed in the hypoperfused group that recovered over 1 month and coincided with arterial remodeling. Increasing hypoperfusion resulted in a reduction in spatial learning abilities in the water maze that has not been previously reported. We were unable to observe severe white matter damage with histology, but a novel approach to analyze diffusion tensor imaging data, graph theory, revealed substantial reorganization of the hypoperfused brain network. A logistic regression model from the data revealed that 3 network parameters were particularly efficient at predicting group membership (global and local efficiency and degrees), and clustering coefficient was correlated with performance in the water maze. Conclusions - Overall, these findings suggest that, despite the autoregulatory abilities of the mouse brain to compensate for a sudden decrease in blood flow, there is evidence of change in the brain networks that can be used as neuroimaging biomarkers to predict outcome

    Phenotyping placental oxygenation in Lgals1 deficient mice using (19)F MRI

    Get PDF
    Placental hypoperfusion and hypoxia are key drivers in complications during fetal development such as fetal growth restriction and preeclampsia. In order to study the mechanisms of disease in mouse models, the development of quantitative biomarkers of placental hypoxia is a prerequisite. The goal of this exploratory study was to establish a technique to noninvasively characterize placental partial pressure of oxygen (PO(2)) in vivo in the Lgals1 (lectin, galactoside-binding, soluble, 1) deficient mouse model of preeclampsia using fluorine magnetic resonance imaging. We hypothesized a decrease in placental oxygenation in knockout mice. Wildtype and knockout animals received fluorescently labeled perfluoro-5-crown-15-ether nanoemulsion i.v. on day E14-15 during pregnancy. Placental PO(2) was assessed via calibrated (19)F MRI saturation recovery T(1) mapping. A gas challenge with varying levels of oxygen in breathing air (30%, 60% and 100% O(2)) was used to validate that changes in oxygenation can be detected in freely breathing, anesthetized animals. At the end of the experiment, fluorophore-coupled lectin was injected i.v. to label the vasculature for histology. Differences in PO(2) between breathing conditions and genotype were statistically analyzed with linear mixed-effects modeling. As expected, a significant increase in PO(2) with increasing oxygen in breathing air was found. PO(2) in Lgals1 knockout animals was decreased but this effect was only present at 30% oxygen in breathing air, not at 60% and 100%. Histological examinations showed crossing of the perfluorocarbon nanoemulsion to the fetal blood pool but the dominating contribution of (19)F MR signal is estimated at > 70% from maternal plasma based on volume fraction measurements of previous studies. These results show for the first time that (19)F MRI can characterize oxygenation in mouse models of placental malfunction
    • …
    corecore