23 research outputs found

    Integrating transposable elements in the 3D genome

    Get PDF
    Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome

    Doxorubicin changes the spatial organization of the genome around active promoters

    Get PDF
    In this study, we delve into the impact of genotoxic anticancer drug treatment on the chromatin structure of human cells, with a particular focus on the effects of doxorubicin. Using Hi-C, ChIP-seq, and RNA-seq, we explore the changes in chromatin architecture brought about by doxorubicin and ICRF193. Our results indicate that physiologically relevant doses of doxorubicin lead to a local reduction in Hi-C interactions in certain genomic regions that contain active promoters, with changes in chromatin architecture occurring independently of Top2 inhibition, cell cycle arrest, and differential gene expression. Inside the regions with decreased interactions, we detected redistribution of RAD21 around the peaks of H3K27 acetylation. Our study also revealed a common structural pattern in the regions with altered architecture, characterized by two large domains separated from each other. Additionally, doxorubicin was found to increase CTCF binding in H3K27 acetylated regions. Furthermore, we discovered that Top2-dependent chemotherapy causes changes in the distance decay of Hi-C contacts, which are driven by direct and indirect inhibitors. Our proposed model suggests that doxorubicin-induced DSBs cause cohesin redistribution, which leads to increased insulation on actively transcribed TAD boundaries. Our findings underscore the significant impact of genotoxic anticancer treatment on the chromatin structure of the human genome

    MCM complexes are barriers that restrict cohesin-mediated loop extrusion

    No full text
    Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)(1-3), which contribute to transcription, recombination and genomic stability(4,5). Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered(6-12). Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome

    Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila

    No full text
    © 2019, The Author(s). How the nuclear lamina (NL) impacts on global chromatin architecture is poorly understood. Here, we show that NL disruption in Drosophila S2 cells leads to chromatin compaction and repositioning from the nuclear envelope. This increases the chromatin density in a fraction of topologically-associating domains (TADs) enriched in active chromatin and enhances interactions between active and inactive chromatin. Importantly, upon NL disruption the NL-associated TADs become more acetylated at histone H3 and less compact, while background transcription is derepressed. Two-colour FISH confirms that a TAD becomes less compact following its release from the NL. Finally, polymer simulations show that chromatin binding to the NL can per se compact attached TADs. Collectively, our findings demonstrate a dual function of the NL in shaping the 3D genome. Attachment of TADs to the NL makes them more condensed but decreases the overall chromatin density in the nucleus by stretching interphase chromosomes

    Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms

    No full text
    Eukaryotic chromosomes are organized in multiple scales, from nucleosomes to chromosome territories. Recently, genome-wide methods identified an intermediate level of chromosome organization, topologically associating domains (TADs), that play key roles in transcriptional regulation. However, these methods cannot directly examine the interplay between transcriptional activation and chromosome architecture while maintaining spatial information. Here we present a multiplexed, sequential imaging approach (Hi-M) that permits simultaneous detection of chromosome organization and transcription in single nuclei. This allowed us to unveil the changes in 3D chromatin organization occurring upon transcriptional activation and homologous chromosome unpairing during awakening of the zygotic genome in intact Drosophila embryos. Excitingly, the ability of Hi-M to explore the multi-scale chromosome architecture with spatial resolution at different stages of development or during the cell cycle will be key to understanding the mechanisms and consequences of the 4D organization of the genome. Cardozo Gizzi et al. developed Hi-M, a multiplexed imaging-based approach to detect 3D chromatin folding in single cells within intact Drosophila embryos. The ability of Hi-M to detect the spatial organization of cells enabled measurement of changes in TAD organization during early embryogenesis and upon transcriptional activation.Fil: Cardozo Gizzi, Andres Mauricio. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Montpellier II; FranciaFil: Cattoni, Diego Ignacio. Université Montpellier II; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Fiche, Jean-Bernard. Centre de Biochimie Structurale; FranciaFil: Espínola, Sergio Martín. Centre de Biochimie Structurale; FranciaFil: Gurgo, Julián Roberto. Centre de Biochimie Structurale; FranciaFil: Messina, Olivier. Centre de Biochimie Structurale; FranciaFil: Houbron, Christophe. Centre de Biochimie Structurale; FranciaFil: Ogiyama, Yuki. Institute Of Human Genetics; FranciaFil: Papadopoulos, Giorgio L.. Institute Of Human Genetics; FranciaFil: Cavalli, Giacomo. Institut de Génétique Humaine, Cnrs Umr 9002; Francia. Institute Of Human Genetics; FranciaFil: Lagha, Mounia. Institut de Génétique Moléculaire de Montpellier; FranciaFil: Nollmann, Marcelo. Centre de Biochimie Structurale; Franci
    corecore