72 research outputs found

    Commentary: Opportunities for research in molecular radiotherapy

    Get PDF
    Cancer has been treated with radiopharmaceuticals for 80 years. A recent National Cancer Research Institute report from the Clinical and Translational Radiotherapy Research Working Group reviews the current status of molecular radiotherapy and has highlighted the barriers to and opportunities for increased research activities. The report recommends a number of actions to promote this field, which in the dawning age of personalized medicine and theragnostics is of increasing importance, particularly with the clinical introduction of a range of new commercial radiotherapeutics at costs in line with those seen for conventional chemotherapeutics. These recommendations recognize the importance of a multidisciplinary approach to the development of molecular radiotherapy and the particular need for investment in radiopharmacies and personalized dosimetry. There are many areas to be investigated including adaptive treatment planning, the use of radiosensitizers and translational radiation biology. Progress in these areas will result in significant patient benefit and more cost-effective use of increasingly expensive therapeutic radiopharmaceuticals. A concerted effort from the community, from funding bodies and from health service providers is now needed to address the scientific and logistical changes necessary to realize the potential offered by this currently underused treatment modality

    Biologically effective dose in fractionated molecular radiotherapy-application to treatment of neuroblastoma with (131)I-mIBG.

    Get PDF
    In this work, the biologically effective dose (BED) is investigated for fractionated molecular radiotherapy (MRT). A formula for the Lea-Catcheside G-factor is derived which takes the possibility of combinations of sub-lethal damage due to radiation from different administrations of activity into account. In contrast to the previous formula, the new G-factor has an explicit dependence on the time interval between administrations. The BED of tumour and liver is analysed in MRT of neuroblastoma with (131)I-mIBG, following a common two-administration protocol with a mass-based activity prescription. A BED analysis is also made for modified schedules, when due to local regulations there is a maximum permitted activity for each administration. Modifications include both the simplistic approach of delivering this maximum permitted activity in each of the two administrations, and also the introduction of additional administrations while maintaining the protocol-prescribed total activity. For the cases studied with additional (i.e. more than two) administrations, BED of tumour and liver decreases at most 12% and 29%, respectively. The decrease in BED of the tumour is however modest compared to the two-administration schedule using the maximum permitted activity, where the decrease compared to the original schedule is 47%

    Future Supply of Medical Radioisotopes for the UK Report 2014

    Full text link
    The UK has no research nuclear reactors and relies on the importation of 99Mo and other medical radioisotopes (e.g. Iodine-131) from overseas (excluding PET radioisotopes). The UK is therefore vulnerable not only to global shortages, but to problems with shipping and importation of the products. In this context Professor Erika Denton UK national Clinical Director for Diagnostics requested that the British Nuclear Medicine Society lead a working group with stakeholders including representatives from the Science & Technology Facilities Council (STFC) to prepare a report. The group had a first meeting on 10 April 2013 followed by a working group meeting with presentations on 9th September 2013 where the scope of the work required to produce a report was agreed. The objectives of the report are: to describe the status of the use of medical radioisotopes in the UK; to anticipate the potential impact of shortages for the UK; to assess potential alternative avenues of medical radioisotope production for the UK market; and to explore ways of mitigating the impact of medical radioisotopes on patient care pathways. The report incorporates details of a visit to the Cyclotron Facilities at Edmonton, Alberta and at TRIUMF, Vancouver BC in Canada by members of the report team.Comment: 121 page

    SELIMETRY- a multicentre I-131 dosimetry trial: a clinical perspective

    Get PDF
    Treatment options for patients with thyroid cancer that is no longer sensitive to iodine therapy are limited. Those treatments which currently exist are associated with significant toxicity. The SELIMETRY trial (EudraCT No 2015-002269-47) aims to investigate the role of the MEK inhibitor Selumetinib in resensitizing advanced iodine refractory differentiated thyroid cancer to radioiodine therapy. Patients deemed to have sufficient iodine uptake in previously iodine refractory lesions after 4 weeks of Selumetinib therapy will be given an empirical activity of 5.5 GBq I-131, and response to therapy will be assessed. The trial presents an opportunity to investigate the dosimetric aspects of radioiodine therapy for advanced thyroid cancer. Patients will undergo serial I-123 single-photon emission CT (SPECT)/CT scans following Selumetinib therapy to determine whether there has been a change in the degree of iodine uptake to justify further I-131 therapy, and to allow dosimetric calculations to predict absorbed dose to target lesions following therapy. Patients receiving I-131 therapy will undergo a further series of post-therapy SPECT/CT scans to allow dosimetric calculations. We describe the challenges in setting up a multicentre trial in a relatively underinvestigated field, describing the work that has been carried out to calibrate and validate measurements to ensure that standardized image data are collected at each site. We hope that this trial will lead to individualization and optimization of therapy for patients with advanced thyroid cancer and that the ground work carried out in setting up a network of centres capable of standardized molecular radiotherapy dosimetry will lead to further clinical trials in this field

    EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations

    Get PDF
    A framework is proposed for modelling the uncertainty in the measurement processes constituting the dosimetry chain that are involved in internal absorbed dose calculations. The starting point is the basic model for absorbed dose in a site of interest as the product of the cumulated activity and a dose factor. In turn, the cumulated activity is given by the area under a time–activity curve derived from a time sequence of activity values. Each activity value is obtained in terms of a count rate, a calibration factor and a recovery coefficient (a correction for partial volume effects). The method to determine the recovery coefficient and the dose factor, both of which are dependent on the size of the volume of interest (VOI), are described. Consideration is given to propagating estimates of the quantities concerned and their associated uncertainties through the dosimetry chain to obtain an estimate of mean absorbed dose in the VOI and its associated uncertainty. This approach is demonstrated in a clinical example

    Whole-remnant and maximum-voxel SPECT/CT dosimetry in <sup>131</sup>I-NaI treatments of differentiated thyroid cancer.

    Get PDF
    Purpose To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC).Methods Eighteen DTC patients were administered 1.11 GBq of 131I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3-7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimated using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry.Results The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2-176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2-145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients.Conclusions Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude

    EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry

    No full text
    The level of administered activity in radionuclide therapy is often limited by haematological toxicity resulting from the absorbed dose delivered to the bone marrow. The purpose of these EANM guidelines is to provide advice to scientists and clinicians on data acquisition and data analysis related to bone-marrow and whole-body dosimetry. The guidelines are divided into sections "Data acquisition" and "Data analysis". The Data acquisition section provides advice on the measurements required for accurate dosimetry including blood samples, quantitative imaging and/or whole-body measurements with a single probe. Issues specific to given radiopharmaceuticals are considered. The Data analysis section provides advice on the calculation of absorbed doses to the whole body and the bone marrow. The total absorbed dose to the bone marrow consists of contributions from activity in the bone marrow itself (self-absorbed dose) and the cross-absorbed dose to the bone marrow from activity in bone, larger organs and the remainder of the body. As radionuclide therapy enters an era where patient-specific dosimetry is used to guide treatments, accurate bone-marrow and whole-body dosimetry will become an essential element of treatment planning. We hope that these guidelines will provide a basis for the optimization and standardization of the treatment of cancer with radiopharmaceuticals, which will facilitate single- and multi-centre radionuclide therapy studies
    corecore