15 research outputs found

    SELIMETRY- a multicentre I-131 dosimetry trial: a clinical perspective

    Get PDF
    Treatment options for patients with thyroid cancer that is no longer sensitive to iodine therapy are limited. Those treatments which currently exist are associated with significant toxicity. The SELIMETRY trial (EudraCT No 2015-002269-47) aims to investigate the role of the MEK inhibitor Selumetinib in resensitizing advanced iodine refractory differentiated thyroid cancer to radioiodine therapy. Patients deemed to have sufficient iodine uptake in previously iodine refractory lesions after 4 weeks of Selumetinib therapy will be given an empirical activity of 5.5 GBq I-131, and response to therapy will be assessed. The trial presents an opportunity to investigate the dosimetric aspects of radioiodine therapy for advanced thyroid cancer. Patients will undergo serial I-123 single-photon emission CT (SPECT)/CT scans following Selumetinib therapy to determine whether there has been a change in the degree of iodine uptake to justify further I-131 therapy, and to allow dosimetric calculations to predict absorbed dose to target lesions following therapy. Patients receiving I-131 therapy will undergo a further series of post-therapy SPECT/CT scans to allow dosimetric calculations. We describe the challenges in setting up a multicentre trial in a relatively underinvestigated field, describing the work that has been carried out to calibrate and validate measurements to ensure that standardized image data are collected at each site. We hope that this trial will lead to individualization and optimization of therapy for patients with advanced thyroid cancer and that the ground work carried out in setting up a network of centres capable of standardized molecular radiotherapy dosimetry will lead to further clinical trials in this field

    EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations

    Get PDF
    A framework is proposed for modelling the uncertainty in the measurement processes constituting the dosimetry chain that are involved in internal absorbed dose calculations. The starting point is the basic model for absorbed dose in a site of interest as the product of the cumulated activity and a dose factor. In turn, the cumulated activity is given by the area under a time–activity curve derived from a time sequence of activity values. Each activity value is obtained in terms of a count rate, a calibration factor and a recovery coefficient (a correction for partial volume effects). The method to determine the recovery coefficient and the dose factor, both of which are dependent on the size of the volume of interest (VOI), are described. Consideration is given to propagating estimates of the quantities concerned and their associated uncertainties through the dosimetry chain to obtain an estimate of mean absorbed dose in the VOI and its associated uncertainty. This approach is demonstrated in a clinical example
    corecore