41 research outputs found

    Fluid Flow Property Estimation from Seismic Scattering Data

    Get PDF
    We present a methodology for relating seismic scattering signals from fractures to the fluid permeability field of the fracture network. The workflow is used to interpret seismic scattering signals for the reservoir permeability of the Emilio Field in the Adriatic Sea.Eni-MIT Energy Initiative Founding Member Progra

    A multistage time-stepping scheme for the Navier-Stokes equations

    Get PDF
    A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data

    Permeability Estimates of Self-Affine Fracture Faults Based on Generalization of the Bottle Neck Concept

    Full text link
    We propose a method for calculating the effective permeability of two-dimensional self-affine permeability fields based on generalizing the one-dimensional concept of a bottleneck. We test the method on fracture faults where the local permeability field is given by the cube of the aperture field. The method remains accurate even when there is substantial mechanical overlap between the two fracture surfaces. The computational efficiency of the method is comparable to calculating a simple average and is more than two orders of magnitude faster than solving the Reynolds equations using a finite-difference scheme

    Numerical Investigation of Wind Turbine Airfoils under Clean and Dusty Air Conditions

    Get PDF
    This paper focuses on the simulation of the airflow around wind turbine airfoils (S809 and S814) under both clean and dusty air conditions by using Computational Fluid Dynamics (CFD). The physical geometries of the airfoils and the meshing processes are completed in the ANSYS Mesh package ICEM. The simulation is done by ANSYS FLUENT. For clean air condition, Spalart– Allmaras (SA) model and realizable k-ε model are used. The results are compared with the experimental data to test which model agrees better. For dusty air condition, simulation of the two-phase flow is operated by realizable k-ε model and discrete phase model (DPM) in different concentration of dust particles (1% and 10% in volume). The results are compared with the data of clean air to illustrate the effect of dust contamination on the lift and drag characteristics of the airfoil

    CCB1033 FLUID FLOW AND TRANSPORT

    No full text

    Table of Contents

    No full text
    corecore