3,241 research outputs found

    How to suppress undesired synchronization

    Get PDF
    It is delightful to observe the emergence of synchronization in the blinking of fireflies to attract partners and preys. Other charming examples of synchronization can also be found in a wide range of phenomena such as, e.g., neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in communication networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge of the system, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement in mitigation is observed when contrarians sit at the highly connected elements. The same qualitative results are obtained for artificially generated networks as well as two real ones, namely, the Routers of the Internet and a neuronal network

    How was it for you? Experiences of participatory design in the UK health service

    Get PDF
    Improving co-design methods implies that we need to understand those methods, paying attention to not only the effect of method choices on design outcomes, but also how methods affect the people involved in co-design. In this article, we explore participants' experiences from a year-long participatory health service design project to develop ‘Better Outpatient Services for Older People’. The project followed a defined method called experience-based design (EBD), which represented the state of the art in participatory service design within the UK National Health Service. A sample of participants in the project took part in semi-structured interviews reflecting on their involvement in and their feelings about the project. Our findings suggest that the EBD method that we employed was successful in establishing positive working relationships among the different groups of stakeholders (staff, patients, carers, advocates and design researchers), although conflicts remained throughout the project. Participants' experiences highlighted issues of wider relevance in such participatory design: cost versus benefit, sense of project momentum, locus of control, and assumptions about how change takes place in a complex environment. We propose tactics for dealing with these issues that inform the future development of techniques in user-centred healthcare design

    The environmental security debate and its significance for climate change

    Get PDF
    Policymakers, military strategists and academics all increasingly hail climate change as a security issue. This article revisits the (comparatively) long-standing “environmental security debate” and asks what lessons that earlier debate holds for the push towards making climate change a security issue. Two important claims are made. First, the emerging climate security debate is in many ways a re-run of the earlier dispute. It features many of the same proponents and many of the same disagreements. These disagreements concern, amongst other things, the nature of the threat, the referent object of security and the appropriate policy responses. Second, given its many different interpretations, from an environmentalist perspective, securitisation of the climate is not necessarily a positive development

    Knaster's problem for (Z2)k(Z_2)^k-symmetric subsets of the sphere S2k−1S^{2^k-1}

    Full text link
    We prove a Knaster-type result for orbits of the group (Z2)k(Z_2)^k in S2k−1S^{2^k-1}, calculating the Euler class obstruction. Among the consequences are: a result about inscribing skew crosspolytopes in hypersurfaces in R2k\mathbb R^{2^k}, and a result about equipartition of a measures in R2k\mathbb R^{2^k} by (Z2)k+1(Z_2)^{k+1}-symmetric convex fans

    Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions

    Get PDF
    In this paper we turn the spotlight on a class of lexicographic ranking functions introduced by Bradley, Manna and Sipma in a seminal CAV 2005 paper, and establish for the first time the complexity of some problems involving the inference of such functions for linear-constraint loops (without precondition). We show that finding such a function, if one exists, can be done in polynomial time in a way which is sound and complete when the variables range over the rationals (or reals). We show that when variables range over the integers, the problem is harder -- deciding the existence of a ranking function is coNP-complete. Next, we study the problem of minimizing the number of components in the ranking function (a.k.a. the dimension). This number is interesting in contexts like computing iteration bounds and loop parallelization. Surprisingly, and unlike the situation for some other classes of lexicographic ranking functions, we find that even deciding whether a two-component ranking function exists is harder than the unrestricted problem: NP-complete over the rationals and ÎŁ2P\Sigma^P_2-complete over the integers.Comment: Technical report for a corresponding CAV'15 pape

    HST/ACS Emission Line Imaging of Low Redshift 3CR Radio Galaxies I: The Data

    Get PDF
    We present 19 nearby (z<0.3) 3CR radio galaxies imaged at low- and high-excitation as part of a Cycle 15 Hubble Space Telescope snapshot survey with the Advanced Camera for Surveys. These images consist of exposures of the H-alpha (6563 \AA, plus [NII] contamination) and [OIII] 5007 \AA emission lines using narrow-band linear ramp filters adjusted according to the redshift of the target. To facilitate continuum subtraction, a single-pointing 60 s line-free exposure was taken with a medium-band filter appropriate for the target's redshift. We discuss the steps taken to reduce these images independently of the automated recalibration pipeline so as to use more recent ACS flat-field data as well as to better reject cosmic rays. We describe the method used to produce continuum-free (pure line-emission) images, and present these images along with qualitative descriptions of the narrow-line region morphologies we observe. We present H-alpha+[NII] and [OIII] line fluxes from aperture photometry, finding the values to fall expectedly on the redshift-luminosity trend from a past HST/WFPC2 emission line study of a larger, generally higher redshift subset of the 3CR. We also find expected trends between emission line luminosity and total radio power, as well as a positive correlation between the size of the emission line region and redshift. We discuss the associated interpretation of these results, and conclude with a summary of future work enabled by this dataset.Comment: 18 pages, 12 figures, accepted for publication in ApJ

    Non-polynomial Worst-Case Analysis of Recursive Programs

    Full text link
    We study the problem of developing efficient approaches for proving worst-case bounds of non-deterministic recursive programs. Ranking functions are sound and complete for proving termination and worst-case bounds of nonrecursive programs. First, we apply ranking functions to recursion, resulting in measure functions. We show that measure functions provide a sound and complete approach to prove worst-case bounds of non-deterministic recursive programs. Our second contribution is the synthesis of measure functions in nonpolynomial forms. We show that non-polynomial measure functions with logarithm and exponentiation can be synthesized through abstraction of logarithmic or exponentiation terms, Farkas' Lemma, and Handelman's Theorem using linear programming. While previous methods obtain worst-case polynomial bounds, our approach can synthesize bounds of the form O(nlog⁥n)\mathcal{O}(n\log n) as well as O(nr)\mathcal{O}(n^r) where rr is not an integer. We present experimental results to demonstrate that our approach can obtain efficiently worst-case bounds of classical recursive algorithms such as (i) Merge-Sort, the divide-and-conquer algorithm for the Closest-Pair problem, where we obtain O(nlog⁥n)\mathcal{O}(n \log n) worst-case bound, and (ii) Karatsuba's algorithm for polynomial multiplication and Strassen's algorithm for matrix multiplication, where we obtain O(nr)\mathcal{O}(n^r) bound such that rr is not an integer and close to the best-known bounds for the respective algorithms.Comment: 54 Pages, Full Version to CAV 201

    Neutron Imaging Camera

    Get PDF
    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented
    • 

    corecore