7,497 research outputs found
Double Charge Exchange And Configuration Mixing
The energy dependence of forward pion double charge exchange reactions on
light nuclei is studied for both the Ground State transition and the
Double-Isobaric-Analog-State transitions. A common characteristic of these
double reactions is a resonance-like peak around 50 MeV pion lab energy. This
peak arises naturally in a two-step process in the conventional pion-nucleon
system with proper handling of nuclear structure and pion distortion. A
comparison among the results of different nuclear structure models demonstrates
the effects of configuration mixing. The angular distribution is used to fix
the single particle wave function.Comment: Added 1 figure (now 8) corrected references and various other change
Growth, Condition, and Trophic Relations of Stocked Trout in Southern Appalachian Mountain Streams
Stream trout fisheries are among the most popular and valuable in the United States, but many are dependent on hatcheries to sustain fishing and harvest. Thus, understanding the ecology of hatcheryâreared trout stocked in natural environments is fundamental to management. We evaluated the growth, condition, and trophic relations of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss that were stocked in southern Appalachian Mountain streams in western North Carolina. Stocked and wild (naturalized) trout were sampled over time (monthly; September 2012âJune 2013) to compare condition and diet composition and to evaluate temporal dynamics of trophic position with stable isotope analysis. Relative weights (Wr) of stocked trout were inversely associated with their stream residence time but were consistently higher than those of wild trout. Weight loss of harvested stocked trout was similar among species and sizes, but fish stocked earlier lost more weight. Overall, 40% of 141 stomachs from stocked trout were empty compared to 15% of wild trout stomachs (N = 26). We identified a much higher rate of piscivory in wild trout (18 times that of stocked trout), and wild trout were 4.3 times more likely to consume gastropods relative to stocked trout. Hatcheryâreared trout were isotopically similar to coâoccurring wild fish for both ÎŽ13C and ÎŽ15N values but were less variable than wild trout. Differences in sulfur isotope ratios (ÎŽ34S) between wild and hatcheryâreared trout indicated that the diets of wild fish were enriched in ÎŽ34S relative to the diets of hatcheryâreared fish. Although hatcheryreared trout consumed prey items similar to those of wild fish, differences in consumption or behavior (e.g., reduced feeding) may have resulted in lower condition and negative growth. These findings provide critical insight on the trophic dynamics of stocked trout and may assist in developing and enhancing stream trout fisheries
Exact Solution of the Isovector Proton Neutron Pairing Hamiltonian
The complete exact solution of the T=1 neutron-proton pairing Hamiltonian is
presented in the context of the SO(5) Richardson-Gaudin model with
non-degenerate single-particle levels and including isospin-symmetry breaking
terms. The power of the method is illustrated with a numerical calculation for
Ge for a model space which is out of reach of modern
shell-model codes.Comment: To be published by Physical Review Letter
Boson mappings and four-particle correlations in algebraic neutron-proton pairing models
Neutron-proton pairing correlations are studied within the context of two
solvable models, one based on the algebra SO(5) and the other on the algebra
SO(8). Boson-mapping techniques are applied to these models and shown to
provide a convenient methodological tool both for solving such problems and for
gaining useful insight into general features of pairing. We first focus on the
SO(5) model, which involves generalized T=1 pairing. Neither boson mean-field
methods nor fermion-pair approximations are able to describe in detail
neutron-proton pairing in this model. The analysis suggests, however, that the
boson Hamiltonian obtained from a mapping of the fermion Hamiltonian contains a
pairing force between bosons, pointing to the importance of boson-boson (or
equivalently four-fermion) correlations with isospin T=0 and spin S=0. These
correlations are investigated by carrying out a second boson mapping. Closed
forms for the fermion wave functions are given in terms of the fermion-pair
operators. Similar techniques are applied -- albeit in less detail -- to the
SO(8) model, involving a competition between T=1 and T=0 pairing. Conclusions
similar to those of the SO(5) analysis are reached regarding the importance of
four-particle correlations in systems involving neutron-proton pairing.Comment: 31 pages, Latex, 3 Postscript figures, uses epsf.sty, submitted to
Physical Review
Pairing and alpha-like quartet condensation in N=Z nuclei
We discuss the treatment of isovector pairing by an alpha-like quartet
condensate which conserves exactly the particle number, the spin and the
isospin. The results show that the quartet condensate describes accurately the
isovector pairing correlations in the ground state of systems with an equal
number of protons and neutronsComment: 4 pages, to appear in Journal of Physics: Conference Serie
Classification of states of single- fermions with -pairing interaction
In this paper we show that a system of three fermions is exactly solvable for
the case of a single- in the presence of an angular momentum- pairing
interaction. On the basis of the solutions for this system, we obtain new sum
rules for six- symbols. It is also found that the "non-integer" eigenvalues
of three fermions with angular momentum around the maximum appear as
"non-integer" eigenvalues of four fermions when is around (or larger than)
and the Hamiltonian contains only an interaction between pairs of
fermions coupled to spin . This pattern is also found in
five and six fermion systems. A boson system with spin exhibits a similar
pattern.Comment: to be published in Physical Review
Local Density Approximation for proton-neutron pairing correlations. I. Formalism
In the present study we generalize the self-consistent
Hartree-Fock-Bogoliubov (HFB) theory formulated in the coordinate space to the
case which incorporates an arbitrary mixing between protons and neutrons in the
particle-hole (p-h) and particle-particle (p-p or pairing) channels. We define
the HFB density matrices, discuss their spin-isospin structure, and construct
the most general energy density functional that is quadratic in local
densities. The consequences of the local gauge invariance are discussed and the
particular case of the Skyrme energy density functional is studied. By varying
the total energy with respect to the density matrices the self-consistent
one-body HFB Hamiltonian is obtained and the structure of the resulting mean
fields is shown. The consequences of the time-reversal symmetry, charge
invariance, and proton-neutron symmetry are summarized. The complete list of
expressions required to calculate total energy is presented.Comment: 22 RevTeX page
Economic Analysis of Wildlife Management Costs in the U.S. Forest Service, Northern Region
Paper published as Bulletin 47 in the UM Bulletin Forestry Series.https://scholarworks.umt.edu/umforestrybulletin/1030/thumbnail.jp
General pairing interactions and pair truncation approximations for fermions in a single-j shell
We investigate Hamiltonians with attractive interactions between pairs of
fermions coupled to angular momentum J. We show that pairs with spin J are
reasonable building blocks for the low-lying states. For systems with only a J
= Jmax pairing interaction, eigenvalues are found to be approximately integers
for a large array of states, in particular for those with total angular momenta
I le 2j. For I=0 eigenstates of four fermions in a single-j shell we show that
there is only one non-zero eigenvalue. We address these observations using the
nucleon pair approximation of the shell model and relate our results with a
number of currently interesting problems.Comment: a latex text file and 2 figures, to be publishe
- âŠ