13 research outputs found

    Integrated human/SARS-CoV-2 metabolic models present novel treatment strategies against COVID-19

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic caused by the new coronavirus (SARS-CoV-2) is currently responsible for more than 3 million deaths in 219 countries across the world and with more than 140 million cases. The absence of FDA-approved drugs against SARS-CoV-2 has highlighted an urgent need to design new drugs. We developed an integrated model of the human cell and SARS-CoV-2 to provide insight into the virus'' pathogenic mechanism and support current therapeutic strategies. We show the biochemical reactions required for the growth and general maintenance of the human cell, first, in its healthy state. We then demonstrate how the entry of SARS-CoV-2 into the human cell causes biochemical and structural changes, leading to a change of cell functions or cell death. A new computational method that predicts 20 unique reactions as drug targets from our models and provides a platform for future studies on viral entry inhibition, immune regulation, and drug optimisation strategies. The model is available in BioModels (https://www.ebi.ac.uk/biomodels/MODEL2007210001) and the software tool, findCPcli, that implements the computational method is available at https://github.com/findCP/findCPcli. © 2021 Bannerman et al

    CFTR protects against Mycobacterium abscessus infection by fine-tuning host oxidative defenses

    Get PDF
    Infection by rapidly growing Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF), a genetic disease caused by a defective CF transmembrane conductance regulator (CFTR). However, the potential link between a dysfunctional CFTR and vulnerability to M. abscessus infection remains unknown. Herein, we exploit a CFTR-depleted zebrafish model, recapitulating CF immuno-pathogenesis, to study the contribution of CFTR in innate immunity against M. abscessus infection. Loss of CFTR increases susceptibility to infection through impaired NADPH oxidase-dependent restriction of intracellular growth and reduced neutrophil chemotaxis, which together compromise granuloma formation and integrity. As a consequence, extracellular multiplication of M. abscessus expands rapidly, inducing abscess formation and causing lethal infections. Because these phenotypes are not observed with other mycobacteria, our findings highlight the crucial and specific role of CFTR in the immune control of M. abscessus by mounting effective oxidative responses

    Polymeric nanobiotics as a novel treatment for mycobacterial infections

    Get PDF
    Mycobacterium tuberculosis (Mtb) remains a major challenge to global health, made worse by the spread of multi-drug resistance. Currently, the efficacy and safety of treatment is limited by difficulties in achieving and sustaining adequate tissue antibiotic concentrations while limiting systemic drug exposure to tolerable levels. Here we show that nanoparticles generated from a polymer-antibiotic conjugate (‘nanobiotics’) deliver sustained release of active drug upon hydrolysis in acidic environments, found within Mtb-infected macrophages and granulomas, and can, by encapsulation of a second antibiotic, provide a mechanism of synchronous drug delivery. Nanobiotics are avidly taken up by infected macrophages, enhance killing of intracellular Mtb, and are efficiently delivered to granulomas and extracellular mycobacterial cords in vivo in an infected zebrafish model. We demonstrate that isoniazid (INH)-derived nanobiotics, alone or with additional encapsulation of clofazimine (CFZ), enhance killing of mycobacteria in vitro and in infected zebrafish, supporting the use of nanobiotics for Mtb therapy and indicating that nanoparticles generated from polymer-small molecule conjugates might provide a more general solution to delivering co-ordinated combination chemotherapy

    Treatment of Non-Tuberculous Mycobacteria in Adults with Cystic Fibrosis

    Get PDF
    corecore