221 research outputs found
Galactic cosmic ray response to heliospheric environment changes and implications for cosmogenic isotope records
The interaction of solar wind structures with the termination shock and anomalous cosmic ray enhancements at low energies
Comparing various multi-component global heliosphere models
Modeling of the global heliosphere seeks to investigate the interaction of
the solar wind with the partially ionized local interstellar medium. Models
that treat neutral hydrogen self-consistently and in great detail, together
with the plasma, but that neglect magnetic fields, constitute a sub-category
within global heliospheric models. There are several different modeling
strategies used for this sub-category in the literature. Differences and
commonalities in the modeling results from different strategies are pointed
out. Plasma-only models and fully self-consistent models from four research
groups, for which the neutral species is modeled with either one, three, or
four fluids, or else kinetically, are run with the same boundary parameters and
equations. They are compared to each other with respect to the locations of key
heliospheric boundary locations and with respect to the neutral hydrogen
content throughout the heliosphere. In many respects, the models' predictions
are similar. In particular, the locations of the termination shock agree to
within 7% in the nose direction and to within 14% in the downwind direction.
The nose locations of the heliopause agree to within 5%. The filtration of
neutral hydrogen from the interstellar medium into the inner heliosphere,
however, is model dependent, as are other neutral results including the
hydrogen wall. These differences are closely linked to the strength of the
interstellar bow shock. The comparison also underlines that it is critical to
include neutral hydrogen into global heliospheric models.Comment: 10 pages, 4 figures, submitted to a special section at A&A of an ISSI
team "Determination of the physical Hydrogen parameters of the LIC from
within the Heliosphere
A Two-Dimensional, Self-Consistent Model of Galactic Cosmic Rays in the Heliosphere
We present initial results from our new two-dimensional (radius and
latitude), self-consistent model of galactic cosmic rays in the heliosphere. We
focus on the latitudinal variations in the solar wind flow caused by the
energetic particles. Among other things our results show that the cosmic rays
significantly modify the latitudinal structure of the solar wind flow
downstream of the termination shock. Specifically, for A>0 (corresponding to
the present solar minimum) the wind beyond the shock is driven towards the
equator, resulting in a faster wind flow near the current sheet, while for A<0
the effect is reversed and the wind turns towards the pole, with a faster flow
at high latitudes. We attribute this effect to the latitudinal gradients in the
cosmic ray pressure, caused by drifts, that squeeze the flow towards the
ecliptic plane or the pole, respectively.Comment: 10 pages, 4 Postscript figures, uses AAS LaTeX v4.0, to be published
in The Astrophysical Journal Letter
Termination Shock Asymmetries as Seen by the Voyager Spacecraft: The Role of the Interstellar Magnetic Field and Neutral Hydrogen
We show that asymmetries of the termination shock due to the influence of the interstellar magnetic field (ISMF) are considerably smaller in the presence of neutral hydrogen atoms, which tend to symmetrize the heliopause, the termination shock, and the bow shock due to charge exchange with charged particles. This leads to a much stronger restriction on the ISMF direction and its strength. We demonstrate that in the presence of the interplanetary magnetic field the plane defined by the local interstellar medium (LISM) velocity and magnetic field vectors does not exactly coincide with the plane defined by the interstellar neutral helium and hydrogen velocity vectors in the supersonic solar wind region, which limits the accuracy of the inferred direction of the ISMF. We take into account the tilt of the LISM velocity vector with respect to the ecliptic plane and show that magnetic fields as strong as 3 μG or greater may be necessary to account for the observed asymmetry. Estimates are made of the longitudinal streaming anisotropy of energetic charged particles at the termination shock caused by the nonalignment of the interplanetary magnetic field with its surface. By investigating the behavior of interplanetary magnetic field lines that cross the Voyager 1 trajectory in the inner heliosheath, we estimate the length of the trajectory segment that is directly connected by these lines to the termination shock. A possible effect of the ISMF draping over the heliopause is discussed in connection with radio emission generated in the outer heliosheath
Galactic Cosmic Rays Modulation in the Vicinity of Corotating Interaction Regions: Observations During the Last Two Solar Minima
Corotating interaction regions (CIRs) are responsible for short-term recurrent cosmic-ray modulation, prominent near solar minima. Using the OMNI data sets for two periods of low solar activity near the beginning and end of solar cycle 24, superposed epoch analysis was performed on the solar wind plasma features for 53 and 43 events during periods 2007–2008 and 2017–2018, respectively. Turbulent properties of the solar wind were studied using the variance method for each CIR. Power spectra have been constructed for overlapped subintervals in the vicinity of stream interfaces (SIs). Using measured correlation lengths and turbulent energies, parallel and perpendicular diffusion mean free paths for cosmic-ray ions have been inferred based on two distinct theoretical formulations. For the two periods with opposite solar polarities, our results show that unlike solar wind speed, magnetic field strength, flow pressure, and proton density are relatively higher during the latest period. Increased turbulent energy and reduced parallel transport coefficients of energetic particles at the SIs are observed. The diffusion coefficients follow the same trends during both periods. The perpendicular diffusion starts increasing nearly a day before SIs and is higher in the fast wind. Superposed epoch analysis is performed on the >120 MeV proton count rate obtained from the CRIS instrument on board the ACE spacecraft for the same events. The recorded proton rates have peaks half a day before a SI and reach their minimum more than a day after a SI and have a high anticorrelation with the perpendicular diffusion coefficient
Energetic Particle Anisotropies at the Heliospheric Boundary. II. Transient Features and Rigidity Dependence
In the preceding paper, we showed that large second-order anisotropies of heliospheric ions measured by the Voyager 1 space probe during the August 2012 boundary crossing event could be explained by a magnetic shear across the heliopause preventing particles streaming along the magnetic field from escaping the inner heliosheath. According to Stone et al., the penetration distance of heliospheric ions into the outer heliosheath had a strong dependence on the particle's Larmor radius. By comparing hydrogen, helium, and oxygen ions with the same energy per nucleon, these authors argued that this effect must be attributed to larger cyclotron radii of heavier species rather than differences in velocity. We propose that gradient drift in a nonuniform magnetic field was the cause of both the large second-order anisotropies and the spatial differentiation based on the ion's rigidity. A latitudinal gradient of magnetic field strength of about 10% per AU between 2012.7 and 2012.9 could have provided drift motion sufficient to match both LECP and CRS Voyager 1 observations. We explain the transient intensity dropout observed prior to the heliocliff using flux tube structures embedded in the heliosheath and magnetically connected to interstellar space. Finally, this paper reports a new indirect measurement of the plasma radial velocity at the heliopause on the basis of the time difference between two cosmic-ray telescopes measuring the same intensity dropout
- …
