53 research outputs found

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    New intergeneric orchid hybrid found in Romania × Pseudorhiza nieschalkii (Senghas) P.F.Hunt nothosubsp. siculorum H.Kertész & N.Anghelescu, 2020.

    No full text
    We describe the first reported intergeneric, which naturally occurs between two subspecies belonging to different genera, Dactylorhiza fuchsii subsp. sooana (genus Dactylorhiza) and Pseudorchis albida subsp. tricuspis (genus Pseudorchis), as × Pseudorhiza nieschalkii (Senghas) P.F.Hunt nothosubsp. siculorum H.Kertész & N.Anghelescu, 2020. The hybrid was found and digitally photographed for the first time by Hajnalka Kertész in June, 2020, within Terra Siculorum, in one of the Natura 2000 protected areas, known as Harghita Mădăraș, ROSCI00090. Following detailed morphometric analysis using 67 characters and molecular karyological analyses, we identified this unique specimen as an intergeneric hybrid, new to science. The hybrid, an F1 generation plant, most likely representing a single intergeneric pollination event, is phenotypically intermediate between its parental species in most of the characters scored, but it significantly closely resembles Pseudorchis albida subsp. tricuspis parent. Since several individuals of the parental species occurred in near proximity, within 1-10 meters distance, we suggest that the production of this hybrid required a minimum travel distance of ca 1-10 meters, by the pollinators and frequent exchange of pollen between the parental species was very likely. The parental species and the hybrid, which display a considerable synchronicity in their flowering time, overlap in the pollinator community, sharing various species of Hymenopterans and Dipterans, very abundant in the heathland. This Terra Siculorum hybrid is thus best described as a rarely occurring intergeneric hybrid that shows strong Pseudorchis albida subsp. tricuspis parental dominance in inheritance patterns

    Laser driven nuclear physics at ELI–NP

    No full text
    Summarization: High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 1023 W/cm2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei. The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1. A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed. The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.Παρουσιάστηκε στο: Romanian Reports in Physic

    Research and Science Today Supplement 1/2014

    No full text
    corecore