97 research outputs found

    Quantum Computation with Ballistic Electrons

    Full text link
    We describe a solid state implementation of a quantum computer using ballistic single electrons as flying qubits in 1D nanowires. We show how to implement all the steps required for universal quantum computation: preparation of the initial state, measurement of the final state and a universal set of quantum gates. An important advantage of this model is the fact that we do not need ultrafast optoelectronics for gate operations. We use cold programming (or pre-programming), i.e., the gates are set before launching the electrons; all programming can be done using static electric fields only.Comment: 5 pages, RevTeX4, 5 figures, uses epsf, latexsym, time

    Towards Integrated Mid-Infrared Gas Sensors.

    Get PDF
    Optical gas sensors play an increasingly important role in many applications. Sensing techniques based on mid-infrared absorption spectroscopy offer excellent stability, selectivity and sensitivity, for numerous possibilities expected for sensors integrated into mobile and wearable devices. Here we review recent progress towards the miniaturization and integration of optical gas sensors, with a focus on low-cost and low-power consumption devices

    Operation of Ultra-High Voltage (>10kV) SiC IGBTs at Elevated Temperatures:Benefits & Constraints

    Get PDF
    State of the art TCAD simulation models are used to simulate the performance of ultra-high voltage (10-20 kV) SiC IGBTs in the temperature range 300-775 K. We show that unlike Si-based counterparts, ultra-high voltage SiC IGBTs stand to gain from the temperature rise if the limit is not exceeded. We show that whilst an operation at 375 K is highly promising to achieve the most optimum on-state characteristics from SiC IGBTs, no significant degradation in the on-state current and breakdown voltage alongside with negligible rise in leakage current is observed until 550 K. Therefore, ≥10 kV SiC IGBTs are highly promising for Smart Grid and HVDC

    Retrograde p-well for 10kV-class SiC IGBTs

    Get PDF
    In this paper, we propose the use of a retrograde doping profile for the p-well for ultrahigh voltage (>10 kV) SiC IGBTs. We show that the retrograde p-well effectively addresses the punchthrough issue, whereas offering a robust control over the gate threshold voltage. Both the punchthrough elimination and the gate threshold voltage control are crucial to high-voltage vertical IGBT architectures and are determined by the limits on the doping concentration and the depth that a conventional p-well implant can have. Without any punchthrough, a 10-kV SiC IGBT consisting of retrograde p-well yields gate threshold voltages in the range of 6-7 V with a gate oxide thickness of 100 nm. Gate oxide thickness is typically restricted to 50-60 nm in SiC IGBTs if a conventional p-well with 1×10 17 cm -3 is utilized. We further show that the optimized retrograde p-well offers the most optimum switching performance. We propose that such an effective retrograde p-well, which requires low-energy shallow implants and thus key to minimize processing challenges and device development cost, is highly promising for the ultrahigh-voltage (>10 kV) SiC IGBT technology

    A low-power, low-cost infra-red emitter in CMOS technology

    Get PDF
    In this paper, 1 we present the design and characterization of a low-power low-cost infra-red emitter based on a tungsten micro-hotplate fabricated in a commercial 1-μm SOI-CMOS technology. The device has a 250-μm diameter resistive heater inside a 600-μm diameter thin dielectric membrane. We first present electro-thermal and optical device characterization, long term stability measurements, and then demonstrate its application as a gas sensor for a domestic boiler. The emitter has a dc power consumption of only 70 mW, a total emission of 0.8 mW across the 2.5–15-μm wavelength range, a 50% frequency modulation depth of 70 Hz, and excellent uniformity from device-to-device. We also compare two larger emitters (heater size of 600 and 1800 μm) made in the same technology that have a much higher infra-red emission, but at the detriment of higher power consumption. Finally, we demonstrate that carbon nanotubes can be used to significantly enhance the thermo-optical transduction efficiency of the emitter
    • …
    corecore