1,204 research outputs found

    Situation-appropriate Investment of Cognitive Resources

    Get PDF
    The human brain is equipped with the ability to plan ahead, i.e. to mentally simulate the expected consequences of candidate actions to select the one with the most desirable expected long-term outcome. Insufficient planning can lead to maladaptive behaviour and may even be a contributory cause of important societal problems such as the depletion of natural resources or man-made climate change. Understanding the cognitive and neural mechanisms of forward planning and its regulation are therefore of great importance and could ultimately give us clues on how to better align our behaviour with long-term goals. Apart from its potential beneficial effects, planning is time-consuming and therefore associated with opportunity costs. It is assumed that the brain regulates the investment into planning based on a cost-benefit analysis, so that planning only takes place when the perceived benefits outweigh the costs. But how can the brain know in advance how beneficial or costly planning will be? One potential solution is that people learn from experience how valuable planning would be in a given situation. It is however largely unknown how the brain implements such learning, especially in environments with large state spaces. This dissertation tested the hypothesis that humans construct and use so-called control contexts to efficiently adjust the degree of planning to the demands of the current situation. Control contexts can be seen as abstract state representations, that conveniently cluster together situations with a similar demand for planning. Inferring context thus allows to prospectively adjust the control system to the learned demands of the global context. To test the control context hypothesis, two complex sequential decision making tasks were developed. Each of the two tasks had to fulfil two important criteria. First, the tasks should generate both situations in which planning had the potential to improve performance, as well as situations in which a simple strategy was sufficient. Second, the tasks had to feature rich state spaces requiring participants to compress their state representation for efficient regulation of planning. Participants’ planning was modelled using a parametrized dynamic programming solution to a Markov Decision Process, with parameters estimated via hierarchical Bayesian inference. The first study used a 15-step task in which participants had to make a series of decisions to achieve one or multiple goals. In this task, the computational costs of accurate forward planning increased exponentially with the length of the planning horizon. We therefore hypothesized that participants identify ‘distance from goal’ as the relevant contextual feature to guide their regulation of forward planning. As expected we found that participants predominantly relied on a simple heuristic when still far from the goal but progressively switched towards forward planning when the goal approached. In the second study participants had to sustainably invest a limited but replenishable energy resource, that was needed to accept offers, in order to accumulate a maximum number of points in the long run. The demand for planning varied across the different situations of the task, but due to the large number of possible situations (n = 448) it would be difficult for the participants to develop an expectation for each individual situation of how beneficial planning would be. We therefore hypothesized, that to regulate their forward planning participants used a compressed tasks representation, clustering together states with similar demands for planning. Consistent with this, reaction times (operationalising planning duration) increased with trial-by-trial value-conflict (operationalising approximate planning demand), but this increase was more pronounced in a context with generally high demand for planning. We further found that fMRI activity in the dorsal anterior cingulate cortex (dACC) increased with conflict, but this increase was more pronounced in a context with generally high demand for planning as well. Taken together, the results suggest that the dACC integrates representations of planning demand on different levels of abstraction to regulate prospective information sampling in an efficient and situation-appropriate way. This dissertation provides novel insights into the question how humans adapt their planning to the demands of the current situation. The results are consistent with the view that the regulation of planning is based on an integrated signal of the expected costs and benefits of planning. Furthermore, the results of this dissertation provide evidence that the regulation of planning in environments with real-world complexity critically relies on the brain’s powerful ability to construct and use abstract hierarchical representations

    Dynamical trapping and chaotic scattering of the harmonically driven barrier

    Full text link
    A detailed analysis of the classical nonlinear dynamics of a single driven square potential barrier with harmonically oscillating position is performed. The system exhibits dynamical trapping which is associated with the existence of a stable island in phase space. Due to the unstable periodic orbits of the KAM-structure, the driven barrier is a chaotic scatterer and shows stickiness of scattering trajectories in the vicinity of the stable island. The transmission function of a suitably prepared ensemble yields results which are very similar to tunneling resonances in the quantum mechanical regime. However, the origin of these resonances is different in the classical regime.Comment: 14 page

    Magneto-optical behaviour of EuIn_2P_2

    Full text link
    We report results of a magneto-optical investigation of the Zintl-phase compound EuIn2_2P2_2. The compound orders magnetically at TCT_C=24 K and exhibits concomitant large magnetoresistance effects. For T≤T\le50 K and increasing magnetic fields we observe a transfer of spectral weight in σ1(ω)\sigma_1(\omega) from energies above 1 eV into the low-energy metallic component as well as into a mid-infrared signal centered at about 600 cm−1^{-1}. This latter absorption is reminiscent to what has been seen in a large variety of so-called Kondo materials and ascribed to excitations across the hybridization gap. The observed gain of Drude weight upon increasing magnetic field suggests an enhancement of the itinerant charge-carrier concentration due to the increasing magnetization, a phenomenon that was previously observed in other compounds which exhibit colossal magnetoresistive effects.Comment: 13 pages, 4 figure

    From Single Lane to Highways: Analyzing the Adoption of Multipath TCP in the Internet

    Full text link
    Multipath TCP (MPTCP) extends traditional TCP to enable simultaneous use of multiple connection endpoints at the source and destination. MPTCP has been under active development since its standardization in 2013, and more recently in February 2020, MPTCP was upstreamed to the Linux kernel. In this paper, we provide the first broad analysis of MPTCPv0 in the Internet. We probe the entire IPv4 address space and an IPv6 hitlist to detect MPTCP-enabled systems operational on port 80 and 443. Our scans reveal a steady increase in MPTCP-capable IPs, reaching 9k+ on IPv4 and a few dozen on IPv6. We also discover a significant share of seemingly MPTCP-capable hosts, an artifact of middleboxes mirroring TCP options. We conduct targeted HTTP(S) measurements towards select hosts and find that middleboxes can aggressively impact the perceived quality of applications utilizing MPTCP. Finally, we analyze two complementary traffic traces from CAIDA and MAWI to shed light on the real-world usage of MPTCP. We find that while MPTCP usage has increased by a factor of 20 over the past few years, its traffic share is still quite low.Comment: Proceedings of the 2021 IFIP Networking Conference (Networking '21). Visit https://mptcp.io for up-to-date MPTCP measurement result

    Annual proxy data from Lago Grande di Monticchio (southern Italy) between 76 and 112 ka: new chronological constraints and insights on abrupt climatic oscillations

    Get PDF
    We present new annual sedimentological proxies and sub-annual element scanner data from the Lago Grande di Monticchio (MON) sediment record for the sequence 76–112 thousand years before present (ka). They are combined with the previously published decadal to centennial resolved pollen assemblage in order to provide a comprehensive reconstruction of six major abrupt stadial spells (MON 1–6) in the central Mediterranean during the early phase of the last glaciation. These climatic oscillations are defined by intervals of thicker varves and high Ti-counts and coincide with episodes of forest depletion interpreted as Mediterranean stadial conditions (cold winter/dry summer). Our chronology, labelled as MON-2014, has been updated for the study interval by tephrochronology and repeated and more precise varve counts and is independent from ice-core and speleothem chronologies. The high-resolution Monticchio data then have been compared in detail with the Greenland ice-core δ<sup>18</sup>O record (NorthGRIP) and the northern Alps speleothem δ<sup>18</sup>O<sub>calcite</sub> data (NALPS). Based on visual inspection of major changes in the proxy data, MON 2–6 are suggested to correlate with Greenland stadials (GS) 25–20. MON 1 (Woillard event), the first and shortest cooling spell in the Mediterranean after a long phase of stable interglacial conditions, has no counterpart in the Greenland ice core, but coincides with the lowest isotope values at the end of the gradual decrease in δ<sup>18</sup>O<sub>ice</sub> in NorthGRIP during the second half of the Greenland interstadial (GI) 25. MON 3 is the least pronounced cold spell and shows gradual transitions, whereas its NorthGRIP counterpart GS 24 is characterized by sharp changes in the isotope records. MON 2 and MON 4 are the longest and most pronounced oscillations in the MON sediments in good agreement with their counterparts identified in the ice and spelethem records. The length of MON 4 (correlating with GS 22) supports the duration of stadial proposed by the NALPS timescales and suggests ca. 500 year longer duration than calculated by the ice-core chronologies GICC05<sub>modelext</sub> and AICC2012. Absolute dating of the cold spells provided by the MON-2014 chronology shows good agreement among the MON-2014, the GICC05<sub>modelext</sub> and the NALPS timescales for the period between 112 and 100 ka. In contrast, the MON-2014 varve chronology dates the oscillations MON 4 to MON 6 (92–76 ka) as ca. 3500 years older than the most likely corresponding stadials GS 22 to GS 20 by the other chronologies

    MeetingMirror – Unterstützung von Wissenschaftler-Communities auf Konferenzen

    Get PDF
    Auch Wissenschaftler können von Community-Unterstützungssystemen profitieren. Existierende Lösungen dieser Anwendungsdomäne sind beispielsweise spezielle Soziale Netzwerke wie ResearchGate oder erweiterte Publikationsdatenbanken wie Mendeley. Ein Kernproblem dieser Lösungen – wie allgemein von desktop-basierten Sozialen Netzwerken – besteht aber darin, dass auf die Plattformen i.d.R. nur über explizite Suche und primär in der normalen Arbeitsumgebung. d.h. im klassischen Single- User-Schreibtisch-Setting, zugegriffen werden kann. Selbst für den Fall, dass spezifische mobile Lösungen zum ubiquitären Zugriff verfügbar sind, zielen diese ausschließlich auf die asynchrone und dislozierte sowie meist pull-basierte Informationsversorgung von Einzelbenutzern ab und bieten keine explizite Unterstützung synchron-kolozierter Einsatzszenarien, bei denen mehrere Wissenschaftler an einem physischen Ort zusammenkommen (z.B. Konferenzen)

    A Guideline for Humanoid Leg Design with Oblique Axes for Bipedal Locomotion

    Get PDF
    The kinematics of humanoid robots are strongly inspired by the human archetype. A close analysis of the kinematics of the human musculoskeletal system reveals that the human joint axes are oriented within certain inclinations. This is in contrast to the most popular humanoid design with a configuration based on perpendicular joint axes. This paper reviews the oblique joint axes of the mainly involved joints for locomotion of the human musculoskeletal system. We elaborate on how the oblique axes affect the performance of walking and running. The mechanisms are put into perspective for the locomotion types of walking and running. In particular, walking robots can highly benefit from using oblique joint axes. For running, the primary goal is to align the axis of motion to the mainly active sagittal plane. The results of this analysis can serve as a guideline for the kinematic design of a humanoid robot and a prior for optimization-based approaches

    Context-Dependent Risk Aversion: A Model-Based Approach

    Get PDF
    Most research on risk aversion in behavioral science with human subjects has focused on a component of risk aversion that does not adapt itself to context. More recently, studies have explored risk aversion adaptation to changing circumstances in sequential decision-making tasks. It is an open question whether one can identify evidence, at the single subject level, for such risk aversion adaptation. We conducted a behavioral experiment on human subjects, using a sequential decision making task. We developed a model-based approach for estimating the adaptation of risk-taking behavior with single-trial resolution by modeling a subject's goals and internal representation of task contingencies. Using this model-based approach, we estimated the subject-specific adaptation of risk aversion depending on the current task context. We found striking inter-subject variations in the adaptation of risk-taking behavior. We show that these differences can be explained by differences in subjects' internal representations of task contingencies and goals. We discuss that the proposed approach can be adapted to a wide range of experimental paradigms and be used to analyze behavioral measures other than risk aversion
    • …
    corecore