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Abstract 

The human brain is equipped with the ability to plan ahead, i.e. to mentally simulate the expected 

consequences of candidate actions to select the one with the most desirable expected long-term 

outcome. Insufficient planning can lead to maladaptive behaviour and may even be a contributory 

cause of important societal problems such as the depletion of natural resources or man-made 

climate change. Understanding the cognitive and neural mechanisms of forward planning and its 

regulation are therefore of great importance and could ultimately give us clues on how to better 

align our behaviour with long-term goals. 

Apart from its potential beneficial effects, planning is time-consuming and therefore associated with 

opportunity costs. It is assumed that the brain regulates the investment into planning based on a 

cost-benefit analysis, so that planning only takes place when the perceived benefits outweigh the 

costs. But how can the brain know in advance how beneficial or costly planning will be? One 

potential solution is that people learn from experience how valuable planning would be in a given 

situation. It is however largely unknown how the brain implements such learning, especially in 

environments with large state spaces.  

This dissertation tested the hypothesis that humans construct and use so-called control contexts to 

efficiently adjust the degree of planning to the demands of the current situation. Control contexts 

can be seen as abstract state representations, that conveniently cluster together situations with a 

similar demand for planning. Inferring context thus allows to prospectively adjust the control system 

to the learned demands of the global context. To test the control context hypothesis, two complex 

sequential decision making tasks were developed. Each of the two tasks had to fulfil two important 

criteria. First, the tasks should generate both situations in which planning had the potential to 

improve performance, as well as situations in which a simple strategy was sufficient. Second, the 

tasks had to feature rich state spaces requiring participants to compress their state representation 

for efficient regulation of planning. Participants’ planning was modelled using a parametrized 

dynamic programming solution to a Markov Decision Process, with parameters estimated via 

hierarchical Bayesian inference.   

The first study used a 15-step task in which participants had to make a series of decisions to achieve 

one or multiple goals. In this task, the computational costs of accurate forward planning increased 

exponentially with the length of the planning horizon. We therefore hypothesized that participants 

identify ‘distance from goal’ as the relevant contextual feature to guide their regulation of forward 

planning. As expected we found that participants predominantly relied on a simple heuristic when 
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still far from the goal but progressively switched towards forward planning when the goal 

approached.    

In the second study participants had to sustainably invest a limited but replenishable energy 

resource, that was needed to accept offers, in order to accumulate a maximum number of points in 

the long run. The demand for planning varied across the different situations of the task, but due to 

the large number of possible situations (n = 448) it would be difficult for the participants to develop 

an expectation for each individual situation of how beneficial planning would be. We therefore 

hypothesized, that to regulate their forward planning participants used a compressed tasks 

representation, clustering together states with similar demands for planning. Consistent with this, 

reaction times (operationalising planning duration) increased with trial-by-trial value-conflict 

(operationalising approximate planning demand), but this increase was more pronounced in a 

context with generally high demand for planning. We further found that fMRI activity in the dorsal 

anterior cingulate cortex (dACC) increased with conflict, but this increase was more pronounced in a 

context with generally high demand for planning as well. Taken together, the results suggest that the 

dACC integrates representations of planning demand on different levels of abstraction to regulate 

prospective information sampling in an efficient and situation-appropriate way. 

This dissertation provides novel insights into the question how humans adapt their planning to the 

demands of the current situation. The results are consistent with the view that the regulation of 

planning is based on an integrated signal of the expected costs and benefits of planning. 

Furthermore, the results of this dissertation provide evidence that the regulation of planning in 

environments with real-world complexity critically relies on the brain’s powerful ability to construct 

and use abstract hierarchical representations.  

 

 

 

 

 

 



8 
 

1 General introduction 

1.1 Cognitive control - Benefits, costs and the necessity of regulation  

In a familiar and stable context, we often have well-proven default behaviours at our disposal that 

we can carry out without much deliberation. However, changes in our motivation or in external 

conditions may render these default behaviours inappropriate. Cognitive control allows us to 

disengage from these default behaviours, process additional information and flexibly reconfigure our 

behaviour to meet the demands of the situation. (Goschke, 2013; E. K. Miller & Cohen, 2001). 

Consider the example of a ride to work by bicycle. On a regular day the rider just follows the default 

route, navigating through the streets almost automatically. However, should the road be blocked due 

to an accident, the rider has to find a new route, requiring to process additional information 

including the mental simulation of potential alternatives. 

Clearly, cognitive control has the potential to improve performance in many situations, especially in 

situations that are novel or uncertain and if current action has great consequences for future 

possibilities. So why do we not constantly employ the greatest possible degree of cognitive control? 

The reason why cognitive control has to be regulated is that it incurs an opportunity cost (Kurzban et 

al., 2013; Shenhav et al., 2017). For humans with their limited processing capacities, engaging 

cognitive control takes some computation time, as it entails processes like the gating of contextual 

information into working memory, the anticipation of future action consequences or the temporal 

integration of different information sources. The opportunity costs thus result from the behaviours 

and cognitive activities that are foregone due to the employment of the control process. A simple 

example would be when one arrives at a restaurant just before closing time and begins to carefully 

examine the menu to make the selection that best suits one's current desires. In this scenario the 

kitchen would already be closed after the main course and there would be no time to order dessert. 

Another option would have been to choose a familiar main course quickly without much 

consideration, so there would be enough time to order a subsequent dessert. In this example, the 

advantages of deliberating about the main course are offset by the risk of having to forego a dessert. 

Recent work suggests that cognitive control should be allocated to optimize a cost-benefit trade-off 

(Boureau et al., 2015; Gershman et al., 2015; Griffiths et al., 2019; Keramati et al., 2011; Shenhav et 

al., 2013). It seems that this would require to estimate the performance improvement, but also the 

costs of a controlled strategy compared to the standard strategy. Paradoxically, however, the exact 

calculation of the benefits and costs of control would incur its own computational costs. It is 

therefore an obvious thought that the brain uses other mechanisms to circumvent this elaborate or 
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even impossible calculation. One possibility would be the use of readily available and approximate 

signals to decide about when and what kind of control to engage. 

1.2 Learning cognitive control 

One way of avoiding the explicit calculation of control demands is to conceive the regulation of 

control (i.e. meta-control) as a process of learning (Abrahamse et al., 2016; Chiu & Egner, 2019; 

Egner, 2014; Lieder et al., 2018). According to this perspective, a particular state of the control 

system can become bound to a stimulus or context. Later, after learning, contextual cues can rapidly 

trigger the control processes that have been associated with that context in the past. This learning is 

sensitive to reward information and potentially includes a mapping from the context to a 

representation of the value of control (Lieder et al., 2018). Based on such a learned mapping, the 

brain could thus select an appropriate control process for a given context without the need for an 

explicit calculation of costs and benefits. An accumulating body of research is consistent with a value-

based learning account of cognitive control, providing evidence for cross-context transfer of learned 

control strategies and for context-dependent effects of reward and costs on a range of different 

control functions (for recent reviews see M. Botvinick & Braver, 2015; Eppinger et al., 2021). 

1.2.1 Introducing basic findings in cognitive control tasks 

Modulatory effects of reward on conflict processing have been observed in classic response 

interference tasks, such as the Stroop, Flanker or Simon task. These tasks simultaneously evoke two 

stimulus-response mappings of which one is typically prepotent and more automatic. In some of the 

experiments’ trials, the two mappings are congruent, whereas in others, they are incongruent and 

prescribe conflicting responses. In such conflict trials, successful task performance requires to 

supress the prepotent response and to activate the task-relevant stimulus-response mapping. This 

process of reconfiguration and associated attentional processes are thought to explain the typical 

finding that people take more time to respond and are more likely to commit an error during conflict 

trials compared to congruent trials (Eriksen & Eriksen, 1974; J. R. Simon, 1969; Stroop, 1935). The 

adjustment of the brain networks towards a more controlled processing mode in incongruent trials 

has been shown to improve conflict resolution in following incongruent trials. Behaviourally, this 

congruency sequence effect is reflected in that the slowing of responses and the increase in error 

rate in incongruent trials is reduced, if the previous trial was also incongruent (Gratton et al., 1992).  

1.2.2 Control is modulated by reward context 

Importantly, previous studies showed that conflict processing can be modulated by reward 

incentives and contextual manipulations of control demand. In a modified version of the Stroop task 

where colour naming was associated with a potential reward for a subset of ink colours, congruency 
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effects were reduced in potentially rewarded trials relative to unrewarded trials (Krebs et al., 2013; 

Krebs et al., 2010). The authors concluded that anticipation of reward promotes effective stimulus 

processing by increasing attention to the reward predictive stimulus, thus resulting in lower error 

rates and faster responding, i.e. a decreased congruency effect. Padmala and Pessoa (2011) used a 

slightly different variant of the Stroop task in which participants were informed of the possible 

reward by a cue phase prior to the actual Stroop task. They as well found a decreased congruency 

effect in rewarded trials, suggesting that the prospect of reward can proactively prime the control 

system to invest cognitive resources in conflict resolution. Recently, it was proposed that reward 

effects on cognitive control in incentivized Stroop tasks can be explained by a mechanism that learns 

to predict the value of control based on a linear combination of features in a situation (Bustamante 

et al., 2021). Interestingly, these authors’ model also explains how learned control demands 

generalize to novel situations based on a shared set of features and of how this transfer may lead to 

a suboptimal allocation of control if nonlinear combinations of features are predictive of control 

demand. The aforementioned congruence sequence effect is another important behavioural marker 

for cognitive control that can be modulated by reward. Previous studies showed that the 

performance improvement in an incongruent trial which was preceded by another incongruent trial 

can be enhanced if the preceding trial was rewarded (Braem et al., 2012; Stürmer, 2011). 

Additionally, Stürmer (2011) found that the typical response slowing after errors was increased in a 

context where reward could be obtained.  

1.2.3 Control is modulated by difficulty context 

How much cognitive resources are invested depends not only on the expected reward but also on 

the expected difficulty in a particular context. Previous studies modulated context difficulty in a 

Stroop task by combining one part of the task-relevant stimuli with mostly incongruent task-

irrelevant features and the other part with mostly congruent task-irrelevant features (Bugg & Dey, 

2018; Bugg et al., 2011). The results of these studies showed a proportion congruency effect 

characterized by slower reaction times for incongruent trials in a mostly congruent context compared 

to a mostly incongruent context. It was further shown that adjustments in control putatively driven 

by learned stimulus-congruency associations transferred to novel exemplars of the same stimulus 

category. Another study extended these findings, providing evidence for the transfer of stimulus-

control associations across arbitrarily linked stimuli (Bejjani et al., 2018).  In this study the authors 

used a Stroop task with item specific congruency frequency manipulations and three distinct 

experimental phases. First, in the stimulus-stimulus association phase, specific face or house images 

were preceded by a particular scene stimulus, such that pairs of two were formed. Second, in the 

stimulus-control learning phase, particular scene images were followed by mostly congruent or 
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mostly incongruent Stroop trials. And third, in the stimulus control transfer phase, face and house 

images were followed by Stroop trials. As expected, they found that the congruency expectations 

learned for scenes, transferred to their associated face and house images as evidenced by a 

proportion congruency effect.  

The degree to which people invest in cognitive control depends on expectations of how beneficial 

control will be in a given context. Taken together, the reviewed empirical evidence supports the 

notion that the allocation of control is regulated at least partially by learned associations between a 

structured representational stimulus space and an integrated expected value of control. 

1.3 Regulation of forward planning  

1.3.1 Conceptualizing planning as information sampling 

In conflict situations, one is usually uncertain what to do. It is therefore often necessary to sample 

additional information to gain certainty about which action best subserves one's long-term goals. 

Additional information can be sampled both overtly and covertly (L. Hunt et al., 2021). Overt 

information sampling can be realized by either actively directing one's gaze to relevant sources of 

information or by exploratory actions aimed specifically at gaining knowledge about the 

environment. In the case of covert information sampling, however, information is generated 

internally by activating representations from memory. A special form of covert information sampling 

is the mental simulation of future states, actions and their consequences (Schacter et al., 2012). This 

process is commonly referred to as forward planning and is a central component of cognitive control 

(M. M. Botvinick & Cohen, 2014; E. K. Miller & Cohen, 2001), along with the basic inhibitory and 

attentional processes examined in classical interference tasks. Planning ahead can be particularly 

beneficial when the actions we take in the present have a strong influence on future states and 

action opportunities. Examples illustrating the benefits of anticipating future consequences are 

diverse and range from health-promoting behaviour to the sustainable use of limited natural 

resources, to the coordination of a sequence of interdependent actions during spatial navigation. 

Besides the beneficial effects of planning, there is also a downside, namely that planning takes time 

and is thus associated with opportunity costs.  

As motivated above, it is thus crucial for the brain to consider both the costs and benefits for control 

allocation. This becomes especially evident when deciding about how long to plan ahead. However, 

finding the optimal cost-benefit trade-off is hard, since it is often not known in advance how 

resources invested in planning will improve subsequent decisions. The question of how the brain 

balances costs and benefits of planning is an active area of research (e.g. Piray & Daw, 2021), but one 

can identify at least two different forms of regulation acting in parallel. First, the regulation of 
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planning could be conceived of as a emergent property within a dynamic process of information 

sampling (Krajbich et al., 2010). And second, a superordinate process might prospectively adjust the 

parameters of this sampling process to the expected demands of the current situation (D. G. Lee & 

Daunizeau, 2021; Lieder et al., 2018). In the following I will briefly review evidence for both reactive 

and prospective control of planning to lay the basis for formulating the hypotheses of this 

dissertation. 

1.3.2 The regulation of planning emerges from a dynamic process of information 

sampling 

A standard model for information sampling during decision making is the drift diffusion model (DDM, 

Ratcliff et al., 2016). Traditionally, the DDM has been applied to perceptual decision making (Gold & 

Shadlen, 2007), but more recently it has also been applied value-based decision making, i.e. when 

one has to judge which of several options one prefers (Busemeyer et al., 2019; Tajima et al., 2016). In 

the DDM, a response is generated if accumulated samples of noisy evidence reach a predefined 

threshold. The DDM models the dynamics of the decision process and thus allows for both 

predictions of choice outcome and response times. In its simplest form a DDM can be characterized 

by five parameters: The threshold specifies the amount of evidence that must be accumulated until a 

response is generated. Higher thresholds can lead to more accurate decisions but at cost of longer 

response times. The drift rate specifies the speed with which the threshold is approached. 

Importantly, in value-based DDMs with two alternatives the drift rate is usually a function of the 

value difference (Krajbich et al., 2010; Mormann et al., 2010). If the value difference is small, decision 

difficulty (or conflict) is considered high, resulting in slower drift rates and thus slower response 

times. Further parameters specify the noise in the diffusion process, the non-decision time (e.g. for 

execution of the motor signal) and an initial bias for one of the options. How much information is 

sampled could thus be controlled dynamically in the following way: First, rough prior estimates of 

option values and uncertainties are assessed. If there is no clear evidence for one or the other option 

(i.e. if the value difference is small and value estimates uncertain), additional information is sampled, 

which consequentially modulates value estimates and their uncertainties. This process continues 

until a decisive amount of evidence for one over the other option is found. Empirical research 

showed that diffusion models can account for choice, response times, and neural activity during 

simple value-based decision making (Blair et al., 2006; De Martino et al., 2013; L. T. Hunt et al., 2012; 

Krajbich et al., 2010; Mormann et al., 2010; Pochon et al., 2008).  

In contrast to single-trial economic decision making tasks, behaviour in the real world is goal-directed 

and temporally extended. Making good decisions therefore often affords to not only evaluate an 

action's immediate value but also its impact on the value of potential future actions. In other words, 
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goal-directed behaviour often requires planning ahead. In such cases the sampling of evidence, as 

e.g. modelled with the DDM, involves the memory-dependent mental simulation of action sequences 

and their expected outcomes (Biderman et al., 2020; Shadlen & Shohamy, 2016; Wang et al., 2020). 

Consistent with this account, response times correlate with choice conflict in sequential decision 

making tasks which do afford forward planning (Korn & Bach, 2018; Shenhav et al., 2014). Further 

useful characterisation of the planning process has been given by model-based reinforcement 

learning (Collins & Cockburn, 2020; Dolan & Dayan, 2013; Sutton & Barto, 2018). In model-based 

reinforcement learning humans are assumed to acquire a model of their environment, including state 

transition and reward functions, which they can then use to flexibly sample sequences of actions and 

their outcomes (analogous to a search through the decision tree). Using a sequential two-step task,  

Doll et al. (2015) provided linking evidence that such model-based decisions are based on memory-

dependent prospective sampling, involving the hippocampus.  

1.3.3 Prospective and value-based regulation of planning 

Besides the reviewed evidence indicating that the regulation of planning emerges from a dynamic 

process of information sampling, there is also evidence for a more prospective mode of regulation 

(D. G. Lee & Daunizeau, 2021; Lieder et al., 2018). For basic cognitive control functions we already 

discussed in section 1.2 that people prepare their cognitive systems for the upcoming requirements 

based on learned context-control associations. It has been suggested that these learning processes 

play also an important role for the regulation of more complex control functions such as planning. 

For example, Lieder et al. (2018) suggested that people could adequately adjust the height of a 

threshold for information sampling based on a learned mapping between a context and an 

integrated value (including costs and benefits) associated with the threshold setting. Such context-

based learning has least two advantages. First, based on previously learned context-control 

associations, the control system could be proactively adjusted to the planning demands of a novel 

situation in which it is not clear initially how efficiently information can be obtained. Second, 

situations in which planning will likely not improve performance can be excluded a priori from 

further evaluation, thus reducing overall cost of planning. Empirical evidence supports this control 

learning perspective, showing that people can learn to deliberate more in a context where it pays off 

(Lieder & Griffiths, 2017). However, more studies are needed to directly test the role of context-

control learning during planning.  

Findings from the model-based reinforcement learning literature are also consistent with a context- 

and value-dependent learning account of planning regulation. In a multistep-decision task, Kool et al. 

(2017) showed that the prospect of reward increases the propensity to plan ahead, but only if 

planning promises higher reward relative to a simpler model-free strategy. Complementary to that, 
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another study showed that people become less likely to invest in effortful planning if planning is 

associated with a greater cost, operationalized as increased depth of the causal tasks structure (Kool 

et al., 2018). Further evidence suggests that people can gradually adapt the speed-accuracy trade-off 

of planning to the current situation, for example by limiting the planning horizon (Juechems et al., 

2019; Keramati et al., 2016), i.e. the number of future steps considered, or by selectively evaluating 

only part of the decision tree (Huys et al., 2012). 

1.4 The role of the anterior cingulate cortex in deciding about the 

investment of cognitive resources 

The dACC is part of a network that enables adaptive and flexible responding in cognitively demanding 

situations, i.e. situations that require cognitive control (Duncan, 2010; Niendam et al., 2012). The 

exact function that the dACC plays in these situations is not fully understood and a matter of ongoing 

research (Ebitz & Hayden, 2016; Heilbronner & Hayden, 2016). One classic account suggests that the 

dACC plays a central role in the regulation of cognitive control by monitoring processing conflicts that 

serve as a signal for control demand (M. M. Botvinick et al., 2001). Whereas, according to this 

account, a monitoring function is ascribed to the dACC, the actual implementation of control is 

thought to be carried out by a network of other cortical and subcortical structures. Empirical 

research supports the role of the dACC in conflict monitoring, showing the dACC encodes response 

conflict in interference tasks like the Stroop, Simon or Flanker tasks (Kerns et al., 2004; MacDonald et 

al., 2000; E. H. Smith et al., 2019). In line with these findings, recent electrophysiological studies on 

monkeys imply that the monkey dACC may also contain explicit representations of uncertainty that 

support the control of information sampling during reward-based decision making (Monosov et al., 

2020; White et al., 2019). However, previous research indicated that the dACC does not only track 

conflict and uncertainty but also signals reflecting the short- and long-term value of choice options 

(Heilbronner & Hayden, 2016; Kolling et al., 2018) . 

During value-based decision making, conflict arises when there is no clear preference for one option 

over another option. To resolve this conflict it is often necessary to sample additional information 

either internally from memory or externally from the environment. It is widely assumed that the 

dACC acts as a central bottleneck that controls such additional information sampling in the face of 

conflict. Mechanistically, this could be implemented by inhibiting prepotent response tendencies via 

a hyperdirect pathway from the dACC to the subthalamic nucleus (STN) of the basal ganglia (Frank, 

2006; Frank et al., 2015; Jahfari et al., 2011; Wiecki & Frank, 2013; Wiecki et al., 2013). This would 

buy more time (i.e. raising a decision threshold) for controlled processing, like prospective value-

based information sampling, to influence response generation. Empirical evidence supports a conflict 

monitoring role of the dACC during value-based decision making, showing dACC activity correlates 
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with the absolute difference between options values (i.e. conflict) during value-based decision 

making (Blair et al., 2006; Hare et al., 2011; Pochon et al., 2008; Venkatraman et al., 2009). Further 

studies suggest more specifically, that activity in the dACC controls additional information sampling 

via the conflict-dependent modulation of a decision threshold (Cavanagh et al., 2011; Frank et al., 

2015; Gluth et al., 2012). The dACC is also involved in controlling more sophisticated forms of 

information sampling like planning ahead. In sequential decision making tasks that afford such 

planning, dACC activity has been found to increase with measures of conflict and choice uncertainty 

(Economides et al., 2015; Kolling et al., 2014; Korn & Bach, 2018; Schwartenbeck et al., 2015; 

Shenhav et al., 2014).  

1.5 Hypotheses  

Cognitive control and planning in particular is costly, and therefore must be regulated, such that the 

amount of cognitive resources invested is adequate to the current situation (see section 1.1). 

However, knowing in advance how beneficial forward planning will be in a given situation is hard. 

The only way to know the exact value of planning would be to actually do it, which would ab initio 

defeat the purpose of regulating planning, i.e. the reduction of computational and time costs. One 

possible solution to this dilemma is that the allocation of control is regulated by learned associations 

between stimuli and control network configurations (see sections 1.2 and 1.3.3). Such learning likely 

includes generalisation processes that cluster together stimulus states with similar control relevant 

properties into more general control contexts. With that, the brain could infer the demand for 

control, based on previous experience with situations that share some structural properties with the 

current situation.  

This dissertation addressed the question of how people use control contexts to efficiently balance 

the benefits and costs of investing cognitive resources. The focus was specifically on how people 

invest resources in planning multiple steps into the future, because the high computational costs 

involved in planning particularly motivate its regulation. This question was addressed using two 

newly developed complex sequential decision making tasks along with cognitive computational 

modelling and model-based fMRI. Each of the two developed tasks had to fulfil two key 

requirements. First, the tasks had to include both situations in which forward planning could improve 

performance and situations in which a simple heuristic was sufficient. Second, the tasks had to 

feature large state spaces providing participants with the requirement to compress their tasks 

representation in order to decide efficiently about their planning.  

The first behavioural study tested how the mixing of forward planning with simple heuristics changes 

when people progress in a goal-reaching scenario with a fixed deadline. We used a sequential task in 
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which participants accumulated two different types of points (A- and B-points) by accepting or 

rejecting offers. If points surpassed a point-specific threshold after the fixed deadline, the A- or B 

goal counted as achieved and a monetary reward was given. Consequentially, there were four 

different goal outcomes: None of the goals was achieved, either goal A or goal B was achieved or 

both goals were achieved, with the latter result yielding twice the reward than if only one goal was 

achieved. Participants thus had to decide on a trial-by-trial basis whether they should focus on only 

one goal or whether they should try to promote both goals simultaneously. Deciding optimally which 

strategy to pursue, given the current amount of A- and B-points and the number of remaining action 

opportunities, would require to plan ahead multiple time steps (trials) until the end of the deadline. 

However, in this study, the computational costs associated with such planning explodes 

exponentially with the length of the planning horizon. We therefore hypothesized that participants 

would use a simple heuristic when the deadline is temporally distant and planning costs are 

prohibitively high, and progressively shift towards forward planning when the deadline approaches 

and computational costs become affordable. We specifically assumed that this shift would be driven 

by participants identifying and using “distance from deadline” as the relevant contextual indicator for 

the value to plan ahead.   

The second fMRI study investigated how inferred control contexts facilitate the situation-appropriate 

investment into forward planning via a contextually modulated processing of trial-by-trial conflicts in 

the dACC. To address this question, a complex sequential decision making task was developed, in 

which participants had to sustainably invest a limited but replenishable energy resource, that was 

needed to accept offers, in order to accumulate a maximum number of points in the long run. 

Clearly, neither a greedy strategy, i.e. to invest all the energy immediately, nor an overly conservative 

strategy, i.e. to save all the energy for high offers only would lead to an optimal outcome. Deciding 

optimally would thus require to plan ahead multiple steps to anticipate the consequences of energy 

consumption on future action opportunities. Importantly, however, the utility of such planning varied 

across the different situations encountered in the task. And because planning is typically perceived as 

costly, we expected that participants adapt the degree of planning to its changing utility. Knowing in 

advance for every situation how beneficial planning will be was difficult, because of the complexity of 

the task (𝑛𝑆𝑡𝑎𝑡𝑒𝑠 = 448). We therefore hypothesized that, to determine their cognitive resource 

investment, participants leveraged a generalized task space (i.e. control contexts) that grouped 

together states with a similar demand for planning. Control contexts could then be used to 

prospectively reduce, for a subset of situations, the degree of extended evaluation by planning. We 

specifically hypothesized that response times (as a behavioural marker for planning) increase with 

conflict (operationalised as the difference between action values), but that this increase is more 

pronounced, if the participants inferred to be in a context of high control demand. We further tested 



17 
 

whether the context dependency of the coupling between conflict and planning could be mediated 

by context-dependent conflict processing in the ACC. We predicted that activity in the ACC increases 

with conflict but, that this increase is more pronounced in a context with generally high planning 

demand. 
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2 Study 1: Dynamic integration of forward planning and 

heuristic preferences during multiple goal pursuit 

2.1 Abstract 

Selecting goals and successfully pursuing them in an uncertain and dynamic environment is an 

important aspect of human behaviour. In order to decide which goal to pursue at what point in time, 

one has to evaluate the consequences of one’s actions over future time steps by forward planning. 

However, when the goal is still temporally distant, detailed forward planning can be prohibitively 

costly. One way to select actions at minimal computational costs is to use heuristics. It is an open 

question how humans mix heuristics with forward planning to balance computational costs with goal 

reaching performance. To test a hypothesis about dynamic mixing of heuristics with forward 

planning, we used a novel stochastic sequential two-goal task. Comparing participants’ decisions with 

an optimal full planning agent, we found that at the early stages of goal-reaching sequences, in which 

both goals are temporally distant and planning complexity is high, on average 42% (SD = 19%) of 

participants’ choices deviated from the agent’s optimal choices. Only towards the end of the 

sequence, participant’s behaviour converged to near optimal performance. Subsequent model-based 

analyses showed that participants used heuristic preferences when the goal was temporally distant 

and switched to forward planning when the goal was close. 

2.2 Author summary 

When we pursue our goals, there is often a moment when we recognize that we did not make the 

progress that we hoped for. What should we do now? Persevere to achieve the original goal, or 

switch to another goal? Two features of real-world goal pursuit make these decisions particularly 

complex. First, goals can lie far into an unpredictable future and second, there are many potential 

goals to pursue. When potential goals are temporally distant, human decision makers cannot use an 

exhaustive planning strategy, rendering simpler rules of thumb more appropriate. An important 

question is how humans adjust the rule of thumb approach once they get closer to the goal. We 

addressed this question using a novel sequential two-goal task and analysed the choice data using a 

computational model which arbitrates between a rule of thumb and accurate planning. We found 

that participants’ decision making progressively improved as the goal came closer and that this 

improvement was most likely caused by participants starting to plan ahead.  

2.3 Introduction 

Decisions of which goal to pursue at what point in time are central to everyday life (Neal et al., 2017; 

A. M. Schmidt & DeShon, 2007; A. M. Schmidt & Dolis, 2009). Typically, in our dynamic environment, 



19 
 

the outcomes of our decisions are stochastic and one cannot predict with certainty whether a  

preferred goal can be reached. Often, our environment also presents alternative goals that may be 

less preferred but can be reached with a higher probability than the preferred goal. For example, 

when working towards a specific dream position in a career, it may turn out after some time that the 

position is unlikely to be obtained, while another less preferred position can be secured. The decision 

to make is whether one should continue working towards the preferred position, or switch goals and 

secure the less preferred position. The risk when pursuing the preferred position is to lose out on 

both positions. This decision dilemma ‘should I risk it and go after a big reward or play it safe and 

gain less?’ is typical for many decisions we have to make in real life. Critically, for many such 

decisions, these binary choices do not emerge suddenly and unexpectedly, but the decision maker is 

typically confronted with such decisions after some prolonged period of time working towards 

enabling different options. 

How would one choose one’s actions during such a prolonged goal-reaching decision making 

sequence? One way, if the rules of the dynamic environment and its uncertainties are known, is to 

use forward planning to always choose the actions which maximize the gain (see Hayes-Roth & 

Hayes-Roth, 1979; Schacter et al., 2012 reviewing cognitive processes of forward planning). This 

would be the way one would program an optimal agent in a game or experimental task environment. 

This approach is often used in cognitive neuroscience to model the mechanism of how humans make 

decisions in temporally extended goal-reaching scenarios, (e.g. Ballard et al., 2016; Economides et al., 

2014; Kolling et al., 2014; Schwartenbeck et al., 2015). 

However, the implicit assumption made in these decision making models, namely that humans use 

detailed forward planning and compute the probabilities of reaching the goals, is difficult to justify, 

because of the involved computational complexity. In a stochastic environment, forward planning in 

artificial agents is typically achieved via sampling many possible policies (sequences of actions) which 

requires substantial computing power that scales exponentially with the number of future actions. In 

particular, when one is still temporally far from the goal, the computational burden of simulating 

trajectories into the future is the largest, while the usefulness of the resulting action selection is 

minimal: intuitively, in stochastic and sufficiently complex environments, anything may yet happen 

on the long way to the goal so the gain of planning ahead at high cost may be small. The importance 

of the balance between the benefits and its costs to better understand human decision making 

became a recent research focus, (e.g. Boureau et al., 2015; Gershman et al., 2015; Lieder & Griffiths, 

2017; Shenhav et al., 2013; Shenhav et al., 2017). The question is how one can select actions over 

long stretches of time, without being exposed to the computational burden of forward planning or 

similar dynamic programming schemes.  
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One obvious way to select actions at minimal computational costs is to use heuristics that do not 

require forward planning towards a goal (Gigerenzer & Gaissmaier, 2011; Soltani et al., 2016), e.g. to 

always select the action towards a hard to achieve and highly rewarded goal. Clearly, this and other 

heuristics come with the drawback that they can be substantially suboptimal when close to the goal. 

For example, blindly working toward a hard to achieve goal would ignore the risk of not reaching any 

goal. Another solution is to use habit-like strategies to avoid computational costs (Keramati et al., 

2016). However, habits are typically useful only when one encounters exactly the same situation or 

context repeatedly, while goal reaching in uncertain environments as presented here, often requires 

flexible behavioural control. 

It is an open question how humans select their actions when the potentially reachable goals are still 

far away and forward planning is complex. We hypothesized that people use a mixture of two 

approaches to achieve an acceptable balance between outcome and computational costs. This 

mixture changes with temporal distance to the goal: when far from the goal, people use a prior goal 

preference to make their decision about which action to take. With this approach, one assumes that 

one will eventually reach the preferred goal and selects the action that, if one looked backward in 

time from the reached goal, is the most instrumental. When coming closer to the goal, one expects 

that the influence of the goal preference should be progressively superseded by computationally 

more expensive action selection using forward planning to optimally reach the preferred goal or, 

failing that one, to pursue policies to reach an alternative goal.  

To test whether participants used such an approach, we employed a novel behavioural task where 

participants were placed in a dynamic and stochastic sequential decision task environment that 

emulated reaching goals over an extended time period. In miniblocks of 15 trials, participants had to 

make decisions to reach one or two goals, where reaching both goals was rewarded more than 

reaching only one. In each miniblock, it was also possible, if blindly trying to obtain the higher 

reward, to not reach any goal and not obtain any reward. While participants pass through the 

miniblock, both the remaining trials to the end of the miniblock and the complexity of forward 

planning decrease. This enables us to test and model whether participants switch from using 

heuristics to forward planning during goal-reaching. To analyse the behavioural data of 89 

participants and test hypotheses, we used stochastic variational inference, which provided posterior 

beliefs about the goal strategy preference of each participant, among other free model parameters. 

We show that the heuristic goal strategy preference parameter is key to explain participants’ choices 

when temporally distant from the goal, and how, when progressing towards a goal, this goal strategy 

preference interacts with optimal forward planning to achieve near-optimal performance.  
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2.4 Methods 

2.4.1 Participants 

Eighty-nine participants took part in the experiment (58 women, mean age = 24.8, SD = 7.1). 

Reimbursement was a fixed amount of 8€ or class credit plus a performance-dependent bonus (mean 

bonus = 3.88€, SD = 13.6).  The study was approved by the Institutional Review Board of the 

Technische Universität Dresden and conducted in accordance to ethical standards of the Declaration 

of Helsinki. All participants were informed about the purpose and the procedure of the study and 

gave written informed consent prior to the experiment. All participants had normal or corrected-to-

normal vision.  

Table 2.1. Glossary of abbreviations 

Abbreviation Explanation  

A, B Basic offers 

Ab, aB Mixed offers 

𝑃𝑡𝑠𝑡
𝐴 A-points in trial t 

𝑃𝑡𝑠𝑡
𝐵 B-points in trial t 

g1 One-goal-choice = Sequential strategy choice = Choice that maximizes point difference   

g2 Two-goal-choice = Parallel strategy choice = Choice that minimizes point difference 

G1 One-goal-success = One point scale above threshold after 15 trials 

G2 Two-goal-success = Both scales above threshold after 15 trials 

Q(s,a)  Action value = Expected future reward of a choice 

QG(s,a)  Goal choice value = Expected future reward of a goal strategy choice 

DEV Differential expected value = QG (s, g2) - QG (s, g1) 

 

2.4.2 Experimental Task 

The experiment included a training phase of 10 miniblocks, followed by the main experiment 

comprising 60 miniblocks. The 60 miniblocks in the main experiment were subdivided into three 

sessions of 20 miniblocks between which participants could make a self-determined pause. A 

miniblock consisted of 𝑇 = 15 trials in which participants had to accept or reject presented offers to 

collect A-points (𝑃𝑡𝑠𝑡
𝐴) and B-points (𝑃𝑡𝑠𝑡

𝐵, see Table 2.1 for a glossary of abbreviations). If 

participants reached the threshold of 10 points for either A- or B-point scale after 15 trials, they 

received a reward of 5 cents. If participants reached the threshold for both point scales, they 

received a reward of 10 cents. If none of the two thresholds was reached, no additional reward was 

provided. In total, each participant completed 150 training trials and 900 trials in the main 

experiment.   

Each trial started with a response phase lasting until a response was made, but not more than 3 

seconds (Fig 2.1, A). The current amount of A-points and B-points was visualized by two vertical bars 
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flanking the stimulus display. Horizontal white lines marked the threshold of 10 points. At the top of 

the screen, a grey timeline informed the participants about the remaining trials in the miniblock. The 

current offer was displayed at the bottom centre, and the two choice options were presented in the 

centre of the screen by the framed words ‘accept’ and ‘wait’. Participants could accept an offer by an 

upwards keypress and reject the offer by a downwards keypress. If participants did not respond 

within 3 seconds the trial was aborted, and a message was displayed reminding the participant to 

pay attention. If participants missed the response deadline more than 5 times in the whole main 

experiment, 50 cents were subtracted from their final payoff (mean number of timeouts = 1.34, SD = 

1.7). After the response phase, feedback was displayed for 1.5 seconds. Response feedback included 

a change in colour of the frame around the selected response from white to green. Additionally, the 

gain or loss of points was visualized by colouring the respective area on the bar either green or red. 

After 15 trials, feedback for the miniblock was displayed for 4 seconds informing the participants 

whether they won 5, 10 or 0 cents. Code for experimental control and stimulus presentation was 

custom written in Matlab (MathWorks) with extensions from the Psychophysics toolbox (Kleiner et 

al., 2007). 

Participants were presented with four different offers (A, B, Ab, and aB) that occurred with equal 

probability on each trial of the miniblock (see Fig 2.1, B). We call A or B basic offers and Ab or aB 

mixed offers. Accepting basic offers increased the corresponding point count, whereas accepting 

mixed offers transferred a single point from one scale to the other. The basic offers introduce a 

stochastic base rate of points, which allows participants to accumulate enough points on one or both 

point scales. In contrast, mixed offers allow us to identify participants’ intention to reach a state in 

which either both point scales are above threshold ( 𝑃𝑡𝑠𝑇
𝐴  ≥  10 and 𝑃𝑡𝑠𝑇

𝐵 ≥ 10) or only one point 

scale is above threshold (e.g.  𝑃𝑡𝑠𝑇
𝐴 <  10 and 𝑃𝑡𝑠𝑇

𝐵 ≥ 10;  see below for more details). Rejecting an 

offer did not have any effect on the current point count. All participants received the same sequence 

of offers. We generated pseudorandomized lists for the training phase and for the three main 

experimental phases such that the frequency of offers reflected an equal offer occurrence probability 

in every list. We associated each offer with a coloured symbol to facilitate fast recognition.  

Three different conditions modulated the difficulty to reach both thresholds by varying the number 

of initial points (Fig 2.1, C). We chose the number of initial points such that an optimal agent’s 

probability of reaching both thresholds was 75% in easy, 35% in medium and 7% in hard. The agent’s 

goal reaching performance for each initial point configuration was based on 10,000 simulated 

miniblocks with uniform offer probability (see below how we define the optimal agent). The same 

sequence of start conditions was presented to all participants. Pseudorandomized lists with a 

balanced frequency of initial point configurations were generated for the training phase and for the 
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three main experimental phases. Note that the observed agent behaviour in the results section 

deviates from what we expected based on the experimental parametrization process. These 

discrepancies arise because we used random offer sequences (offers with equal probability) for 

experimental parametrization, but one specific offer sequence for the actual experiment. For 

example, in some miniblocks there were only few basic offers (see S2.1-2.4 Fig for details about the 

used offer sequence). 

 

Fig 2.1. Experimental task. (A) Depiction of trial timeline and stimulus features. Participants 

performed miniblocks of 15 trials in which they collected points to reach either one or two goals, 

rewarding them with additional 5 or 10 Cents. Each trial started with a decision phase (maximum 3 

seconds) in which participants had to accept or reject a presented offer. Depending on the offer, 

accepting increased or decreased A- and B-points. The current amount of points was displayed by 

two grey bars flanking the stimulus screen. In the feedback phase (1.5 seconds), gained points were 

displayed as a green area and lost points as a red area on the bar. The horizontal lines crossing the 

bars indicated the threshold for reaching goal A and goal B. After 15 trials, feedback for the miniblock 

was displayed (4 seconds) informing the participant about the reward gained. (B) Summary of offer 

types and their effect on point count. Offers occurred with equal probability in each trial of the 

miniblock. Basic offers (A and B) increased either A or B points. Mixed offers (Ab and aB) added one 

point on one side but subtracted one point on the other side. Only accepting an offer had an effect 

on points. (C) Three different conditions modulated the difficulty to reach both thresholds by varying 

the number of initial points. Using an optimal agent, we chose the number of initial points, such that 

the agent’s probability of reaching both thresholds (G2-success) was 75% in easy, 35% in medium 

and 7% in hard. 
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2.4.3 Choice classification  

In order to maximize reward, it was key for the participants to decide whether they should pursue 

the A- and B-goal in a sequential or in a parallel manner. A parallel strategy, i.e. balancing the two 

point scales, increases the likelihood that both goals (G2, see Table 2.1) will be reached at the end of 

the miniblock, but at the risk of failing. A sequential strategy, i.e. first secure one goal, then focus on 

the second one, might increase the likelihood to reach at least one goal (G1) within 15 trials, but 

decreases the likelihood to achieve G2.     

To obtain a trial-wise measure of the pursued goal strategy, choices were classified based on the 

current point difference and the offer. Choices that minimized the difference between points were 

classified as two-goal-choice (𝑎𝑡  =  𝑔2), reflecting the intention to fill both bars using a parallel 

strategy. Choices that maximized the difference between points were classified as one-goal-choice 

(𝑎𝑡 = 𝑔1), reflecting the intention to pursue G1, or the intention to maintain one bar above 

threshold if G1-success has already been attained (see S2.1 Table). For example, if a participant has 8 

A-points and 6 B-points and the current offer is Ab, accepting would be a g1-choice, whereas waiting 

would be a g2-choice. Conversely, for an aB offer, accepting would be a g2-choice and waiting a g1-

choice. If the difference between points (𝑃𝑡𝑠𝑡
𝐴 – 𝑃𝑡𝑠𝑡

𝐵) is 1 and the offer is aB, g-choice is not defined 

because the absolute point difference would not be changed. This also applies to the mirrored case, 

where the difference between points (𝑃𝑡𝑠𝑡
𝐴 – 𝑃𝑡𝑠𝑡

𝐵) is -1 and the offer is Ab. Note that, due to the 

experimental design, response (accept/wait) and g-choice (g2/g1) were weakly correlated (r = 0.21). 

Furthermore, g-choice classification is only defined for the mixed offers (Ab and aB). The basic offers 

(A and B) are not informative with respect to the participants’ pursued goal strategy. Importantly, all 

trial-level analysis will be restricted to trials which can be related to g-choices. 

2.4.4 Task model 

Here we will formulate the task in an explicit mathematical form, which will help us  clarify what 

implicit assumptions we make in the behavioural model (Ostwald et al., 2018). We define a miniblock 

of the two-goal task as a tuple 

(𝑇, 𝑆, 𝑂, 𝑅, 𝐴, 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑜𝑡, 𝑎𝑡), 𝑝(𝑜𝑡), 𝑝(𝑟𝑡|𝑠𝑡)) (2.1) 

where 

• 𝑇 =  15 denotes the number of trials in a miniblock, hence 𝑡 = 1, … , 15. 

• 𝑆 = {0, … , 20}2 denotes the set of task states, corresponding to the point scale of the two 

point types (A, and B). Hence, a state 𝑠𝑡  in trial 𝑡 is defined as a tuple consisting of point 

counts along the two scales, 𝑠𝑡 = (𝑃𝑡𝑠𝑡
𝐴, 𝑃𝑡𝑠𝑡

𝐵). 
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• 𝑂 = {𝐴, 𝐵, 𝐴𝑏, 𝐵𝑎} denotes the set of four offer types, where the upper case letters denote 

an increase in points of a specific type and the lower case letters subtraction of points. 

• 𝑅 = {𝑅0 , 𝑅𝐿 , 𝑅𝐻} = (0, 5, 10) denotes the set of rewards. 

• 𝐴 = {0, 1} denotes the set of choices, where 0 corresponds to rejecting an offer and 1 to 

accepting an offer. 

• 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑜𝑡 , 𝑎𝑡) denotes state transitions which are implemented in a deterministic 

manner as 𝑠𝑡+1 = 𝑠𝑡 + 𝑎𝑡 ∗ 𝑚(𝑜𝑡), where 𝑚(𝑜𝑡) maps offer types into the point changes on 

the two point scales. 

• 𝑝(𝑜𝑡 = 𝑖) =
1

4
 (for ∀ 𝑖 ∈ 𝑂) denotes a uniform distribution from which the offers are 

sampled. 

• 𝑝(𝑟𝑡|𝑠𝑡) denotes the state and trial dependent reward distribution defined as 

𝑝(𝑟𝑡 = 𝑅0|𝑠𝑡) = 1, for ∀𝑡 < 𝑇 

𝑝(𝑟𝑇 = 𝑅𝐿|𝑃𝑡𝑠𝑇
𝐴 ≥ 10 ⊕  𝑃𝑡𝑠𝑇

𝐵 ≥ 10) = 1 

𝑝(𝑟𝑇 = 𝑅𝐻|𝑃𝑡𝑠𝑇
𝐴 ≥ 10 ∧ 𝑃𝑡𝑠𝑇

𝐵 ≥ 10) = 1 

 
Note that in the experiment the participants are exposed to a pseudo-random sequence of offers, 

meaning that within one experimental block all participants observed the same sequence of offers 

pre-sampled from this uniform distribution (see S2.1-2.4 Fig. for additional information about the 

used offer sequence). For simulations and parameter estimates we use the same pseudo-random 

sequence of observations, hence in each trial 𝑡 of a specific block 𝑏 offers are selected from a 

predefined sequence 𝑜1:𝑇
1:𝐵 = (𝑜1

1, … , 𝑜𝑇
1 , … , 𝑜1

𝐵 , … , 𝑜𝑇
𝐵), initially generated from a uniform 

distribution.   

2.4.5 Behavioural model 

To build a behavioural model, we assume that participants have learned the task representation 

through the training session and initial instruction. Hence, the behavioural model is represented by 

the following tuple  

(𝑇, 𝑆, 𝑂, 𝑅𝜅 , 𝐴, 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑜𝑡 , 𝑎𝑡), 𝑝(𝑜𝑡), 𝑝(𝑟𝑡|𝑠𝑡)) (2.2) 

where 

• 𝑇, 𝑆, 𝑂, 𝐴, 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑜𝑡, 𝑎𝑡), 𝑝(𝑜𝑡), 𝑝(𝑟𝑡|𝑠𝑡) are defined the same way as in the task model. 

• 𝑅𝜅 = {0, 5, 10 ⋅ 𝜅} denotes an agent-specific valuation of the rewarding states. Although the 

instructions for the experimental task clearly explained that participants receive a specific 

monetary reward depending on the final state reached during a miniblock, we considered a 

potential biased estimate of the ratio between G2 and G1 monetary rewards, quantified 
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with the free model parameter 𝜅 ∈ [0, 2]. In other words, we assumed that the participants 

might overestimate or underestimate the value of a G2-success, relative to a G1-success.  

 

Importantly, the process of action selection corresponds to following a behavioural policy that 

maximises expected value during a single miniblock. We classified as G2-success miniblocks in which 

both point scales were above threshold after the final trial ( 𝑃𝑡𝑠𝑇
𝐴  ≥  10 and 𝑃𝑡𝑠𝑇

𝐵 ≥ 10). We 

classified as G1-success miniblocks in which only one point scale was above threshold (e.g.  𝑃𝑡𝑠𝑇
𝐴 <

 10 or 𝑃𝑡𝑠𝑇
𝐵 ≥ 10).  

In what follows we derive the process of estimating choice values and subsequent choices based on 

dynamic programming applied to a finite horizon Markov decision process (Puterman, 2014). For 

experimental studies see also (Ballard et al., 2016; Korn & Bach, 2018).  

2.4.6 Forward Planning  

We start with a typical assumption used in reinforcement learning, namely that participants choose 

actions with the goal to maximize future reward.  Starting from some state 𝑠𝑡   at trial 𝑡, offer 𝑜𝑡, and 

following a behavioural policy 𝜋 we define an expected future reward as 

𝑉[𝑠𝑡 , 𝑜𝑡|𝜋] =  ∑ 𝛾𝑘−𝑡−1𝐸[𝑟𝑘|𝑠𝑡, 𝑜𝑡 , 𝜋]

𝑇

𝑘=𝑡+1

 (2.3) 

where 𝛾 denotes a discount rate and 𝐸[𝑟𝑘| 𝑠𝑡 , 𝑜𝑡, 𝜋] denotes expected reward at some future time 

step 𝑘. The behavioural policy sets the state-action probability 𝜋(𝑎𝑡 , … , 𝑎𝑇|𝑠𝑡 , … , 𝑠𝑇−1) over the 

current and future trials. Hence, we can obtain the expected reward as 

𝐸[𝑟𝑘|𝑠𝑡 , 𝜋] =  ∑ 𝑟𝑘𝑝(𝑟𝑘|𝑠𝑡 , 𝜋)

𝑟𝑘

 (2.4) 

where 

𝑝(𝑟𝑘|𝑠𝑡 , 𝜋) = ∑ ∑ 𝑝(𝑟𝑘|𝑠𝑘) ∏ 𝑝(𝑠𝜏|𝑠𝜏−1, 𝑜𝜏−1, 𝑎𝜏−1)

𝑘

𝜏=𝑡+1

𝑝(𝑜𝜏−1)𝜋(𝑎𝜏−1|𝑠𝜏−1 )

𝑎𝑡:𝑘−1𝑠𝑡+1:𝑘

 (2.5) 

Note that we use 𝑠𝑡+1:𝑘 , and 𝑎𝑡:𝑘−1 to denote a tuple of sequential variables, hence 𝑥𝑚:𝑛 =

(𝑥𝑚 , … , 𝑥𝑛). The key step in deriving the behavioural model was to find the policy which maximises 

the expected future reward, that is, the expected state-offer value. In practice, one obtains the 

optimal policy as  
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𝜋∗ = argmax
𝜋

𝑉[𝑠𝑡 , 𝑜𝑡|𝜋] (2.6) 

We solve the above optimization problem using the backward induction method of dynamic 

programming. The backward induction algorithm is defined in the following iterative steps:  

(i) set the value of final state 𝑠𝑇 as the reward obtained in that state 𝑉[𝑠𝑇|𝜋∗] =

∑ 𝑟𝑇𝑟𝑇∈𝑅_𝜅 𝑝(𝑟𝑇|𝑠𝑇) 

(ii) compute state-offer-action value as  𝑄(𝑠𝑘 , 𝑜𝑘 , 𝑎𝑘) =

𝛾 ∑ 𝑉[𝑠𝑘+1|𝜋∗]𝑝(𝑠𝑘+1|𝑠𝑘 , 𝑜𝑘 , 𝑎𝑘)𝑠𝑘+1
 

(iii) set optimal choice for given state-offer pair as 𝑎𝑘
∗ =  argmax

𝑎
𝑄(𝑠𝑘 , 𝑜𝑘 , 𝑎) 

(iv) define the expected value of state 𝑠𝑘 under optimal policy 𝜋∗ as 𝑉[𝑠𝑘|𝜋∗] =

∑ 𝑄(𝑠𝑘 , 𝑜𝑘 , 𝑎𝑘
∗ )𝑝(𝑜𝑘)𝑜𝑘

  

(v) repeat steps (ii) – (iv) until 𝑘 = 𝑡 

 

Hence, for a fixed value of the reward ratio (𝜅) an optimal choice at trial 𝑡 corresponds to  

𝑎𝑡
∗ = argmax

𝑎
𝑄(𝑠𝑡 , 𝑜𝑡, 𝑎) (2.7) 

We will define the optimal agent as an agent who has a correct representation of the reward ratio 

(𝜅 = 1) and does not discount future reward (𝛾 = 1). We illustrate in Fig 2.2 the Q-value to accept, 

estimated for the case of the optimal agent in an example trial (𝑃𝑡𝑠𝑡
𝐴 = 8,  𝑃𝑡𝑠𝑡

𝐵 = 11,  𝑜𝑡 = 𝐴𝑏). 
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Fig 2.2. Illustration of the state space and associated expected future reward for the optimal agent 

(𝛾 = 1, 𝜅 = 1). The black arrow shows a hypothetical transition in the state space. In trial 14 the 

participant has 9 A-points and 11 B-points (marked by the black cross) and accepts an offer Ab, 

gaining one A-point and losing one B-point (g2-choice). In the resulting state, both thresholds are 

reached; thus, the value of that state is 10 Cents. Similarly, the action that leads to that state has an 

associated Q-value of 10 Cents. In this example the agent would just have to wait in the last trial (15) 

to gain a 10 cents reward.  

2.4.7 Response likelihood 

Participants might compute expected values by mentally simulating and comparing sequences of 

actions towards the end of the miniblock. To illustrate the benefits of planning we consider the 

following example: There are 3 trials left in the current miniblock, and the participant has 9 A-points 

and 9 B-points (10 is threshold), and she receives offer Ab. Planning would, for example, allow to 

compute the probabilities for G2 when choosing either wait or accept. By waiting the participant 

would enter the second last trial with 9 A-points and 9 B-points.  Receiving offer A or B in the second 

last trial (0.5 probability) followed by the complementary offer A or B in the last trial (0.25 

probability) would grant G2. When choosing accept, the participant will have in the second last trial 

10 A-points and 8 B-points. Consequently, she would need two consecutive B-offers (0.25 *0.25 

probability) to achieve G2. Hence, by planning ahead one would conclude that wait gives the highest 

probability for a G2-success. 

Still, planning an arbitrary number of future steps is complex and unrealistic. Hence, we make an 

assumption that the process of optimal action selection described above is perturbed by noise 

(planning noise, and response noise) which we quantify in the form of a parameter 𝛽, denoting 

response precision. Hence, this precision parameter is critical to characterize the participants’ 

reliance on forward planning. Furthermore, instead of an elaborate planning process participants 

might use a simpler heuristic when deciding which action to select. We capture this heuristic in form 

of an additional offer-state-action function ℎ(𝑜𝑡, 𝑠𝑡 , 𝑎𝑡 , 𝜃) which evaluates choices relative to 

possible goals. We describe this heuristic evaluation below. Overall, we can express the response 

likelihood (the probability that a participant makes choice 𝑎𝑡 ) as  

𝑝(𝑎𝑡|𝛽, 𝜃, 𝛾, 𝜅) = 𝑠(𝛽𝑄(𝑜𝑡, 𝑠𝑡 , 𝑎𝑡 , 𝛾, 𝜅) + ℎ(𝑜𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝜃)) (2.8) 

where 𝑠(𝑥) denotes the softmax function. 
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2.4.8 Choice heuristic 

The choice heuristic is defined relative to the current offer 𝑜𝑡, current state 𝑠𝑡 , and possible choices 

𝑎𝑡 . Importantly, we will interpret the choice heuristic in terms of participants’ biases towards 

approaching both goals in a sequential or parallel manner. Hence, it is more intuitive to define the 

choice heuristic as choice biases relative to the goals, and not accept-reject choices. The choice 

heuristic is defined as follows  

ℎ(𝑜𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝜃) =  {
∞, 𝑓𝑜𝑟 𝑜𝑡 ∈ {𝐴, 𝐵}, 𝑎𝑛𝑑 𝑎𝑡 = 1

𝜃, 𝑓𝑜𝑟, 𝑜𝑡 ∈ {𝐴𝑏, 𝐵𝑎}, 𝑎𝑛𝑑 𝑎𝑡 ≡ 𝑔2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.9) 

where 𝑎𝑡 ≡ 𝑔2 denotes choices (accept or reject) which can be classified as g2-choices (see 

subsection Choice classification for details). In summary, a choice which reduces the point difference 

(𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵), for the given offer and the current state, is classified as g2-choice and choice which 

increases the point difference as g1-choice. Essentially, the strategy preference parameter 𝜃 reflects 

participants’ preference for pursuing a sequential (negative values) or parallel (positive values) 

strategy. For example, some participants might have a general tendency to pursue goals in a parallel 

manner, independent of the actual 𝑄-values. Conversely, participants may prefer a more cautious 

sequential approach. Note that we expected this parameter to make the most significant 

contribution to participants’ deviation from optimal behaviour, reflecting their reliance on decision 

heuristics early in the miniblock.  

Finally, for those choices which can be classified as g2- or g1-choices, we can express the response 

likelihood in a simplified form, in terms of free model parameters 𝛽, 𝜃, 𝛾, 𝜅 (Table 2.2). We refer to 

the difference between Q-values for g-choice as the differential expected value (𝐷𝐸𝑉),  

𝐷𝐸𝑉 =  𝑄𝐺(𝑎𝑡 = 𝑔2) − 𝑄𝐺(𝑎𝑡 = 𝑔1) (2.10) 

Using 𝐷𝐸𝑉, we defined the probability of making a g2-choice as  

𝑝(𝑔2) = 𝜎(𝛽 ∙ 𝐷𝐸𝑉(𝛾, 𝜅) + 𝜃) (2.11) 

where 𝜎(𝑥) =
1

1+𝑒−𝑥  denotes the logistic function. Note that the probability of g1-choice becomes 

𝑝(𝑔1) = 1 − 𝑝(𝑔2).  
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Table 2.2. Summary of four free model parameters, the variables, the transformations used to map 
values to unconstrained space and their function in modelling participant behaviour.  

Name Variable Transform Function 

Precision 𝛽 𝑥1 = ln 𝛽 
Captures the impact of 𝐷𝐸𝑉, derived by 
forward planning, on action selection 
 

Strategy preference 𝜃 𝑥2 = 𝜃 

Heuristic preference of pursuing a parallel 
(𝜃 > 0 ) or sequential (𝜃 < 0) strategy, 
independent of the actual 𝐷𝐸𝑉 
 

Discount rate 𝛾 𝑥3 = ln
𝛾

1 − 𝛾
 

Temporal discounting of 𝐷𝐸𝑉 by the factor 
𝛾𝑇−𝑡 , where 𝑇 − 𝑡 is the number of 
remaining trials 
 

Reward ratio 𝜅 𝑥4 = ln
𝜅

2 − 𝜅
 

Accounts for the possibility that participants 
may overweight (𝜅 > 1) or underweight 
(𝜅 < 1) the actual reward for G2-success 
relative to G1-success. 

 

2.4.9 Optimal agent comparison and general data analysis  

We compared participant behaviour with simulated behaviour of an optimal agent. To summarize, 

we denote the optimal agent as the agent which has a correct representation of the reward function 

(𝜅 = 1), does not discount future rewards (𝛾 = 1), is not biased in favour of any choice (𝜃 =  0), and 

who generates deterministic g-choices based on 𝐷𝐸𝑉-values (corresponding to 𝛽 → ∞ in the 

response likelihood, that is, the argmax operator). The optimal agent deterministically accepts A and 

B offers. 

When simulating agent behaviour to evaluate successful goal reaching, the agent received the same 

sequence of offers and initial conditions as the participants. Analysis on the level of g-choices was 

performed by registering instances in which the g-choice of a participant differed from the g-choice 

the optimal agent would have made in the same context (𝑃𝑡𝑠𝑡
𝐴, 𝑃𝑡𝑠𝑡

𝐵, 𝑜𝑡 , 𝑡). Trials with A or B offers 

and trials in which G2 had already been reached, were excluded from the g-choice analysis.  

The goal of this comparison between summary measures of both optimal agent and participants was 

two-fold: First, we used this comparison to visualize deviations from optimality and motivate the 

model-based analysis which was used to test the hypothesis that a shift from heuristics to forward 

planning may explain these deviations. Second, plotting suboptimal g-choices instead of g-choices 

(Fig. Fig 2.4) makes behaviour between participants more comparable. Plotting the proportion of g-

choices averaged across participants would have been mostly uninformative because the significance 

of a g-choice depends on the current state, which is a consequence of the individual history of past 

choices within a miniblock. By registering deviations from an optimal reference point, we circumvent 

this state dependence of g-choices.  
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We used a sign test as implemented in the “sign_test” function of python’s “Statsmodels” (Seabold & 

Perktold, 2010) package to test whether participants total reward and success rates differed 

significantly from the optimal agent’s deterministic performance. We reported the p-value and the 

m-value 𝑚 = (𝑁(+) − 𝑁(−))/2, where 𝑁(+) is the number of values above 0 and 𝑁(−) is the 

number of values below and. To test for learning effects (in the main experimental phase), we used 

mixed effects models as implemented in R (Team, 2013) with the “lm4” package (Bates et al., 2014). 

Intercepts and slopes were allowed to vary between participants. p-values were obtained using the 

“lmerTest” package (Kuznetsova et al., 2017). 

2.4.10 Hierarchical Bayesian data analysis 

To estimate the free model parameters (Table 2.2) that best match the behaviour of each 

participant, we applied an approximate probabilistic inference scheme over a hierarchical parametric 

model, so-called stochastic variational inference (SVI) (Hoffman et al., 2013).  

As a first step, we define a generic (weakly informative) hierarchical prior over unconstrained space 

of model parameters. In Table 2.2 we summarize the roles of free model parameters of our 

behavioural model and the corresponding transforms that we used to map parameters into an 

unconstrained space. We use 𝒙𝑛 to denote a vector of free and unconstrained model parameters 

corresponding to the nth participant. Similarly,  𝝁 and 𝝈 will denote hyperpriors over group mean 

and variance for each free model parameter. We can express the hierarchical prior in the following 

form 

𝜇𝑖 ∼ 𝑁(𝑚𝑖 , 𝑠𝑖) (2.12) 

𝜎𝑖 ∼ 𝐶+(0, 1) (2.13) 

𝑥𝑖
𝑛 ∼ 𝑁(𝜇𝑖 , 𝜆𝜎𝑖) (2.14) 

for 𝑖 ∈ [1, … , 𝑑], and 𝑛 ∈ [1, . . , 𝑁] (2.15) 

where 𝐶+(0,1) denotes a Half-Cauchy prior with scale 𝑠 = 1, 𝑑 number of parameters, and 𝑁 

number of participants. Note that by using this form of a hierarchical prior we make an explicit 

assumption that parameters defining the behaviour of each participant are centred on the same 

mean and share the same prior uncertainty. Hence, both the prior mean and uncertainty for each 

parameter are defined at the group level. Furthermore, the hyper-parameters of the prior 𝜂 =

(𝑚1, … , 𝑚4, 𝑠1 , … , 𝑠4, 𝜆) are also estimated from the data (Empirical Bayes procedure) in parallel to 

the posterior estimates of latent variables 𝜃 = (𝜇1, … , 𝜇4, 𝜎1, … , 𝜎4, 𝒙1, … , 𝒙𝑁). For more details, see 

supporting information (S2.1 Notebook). 

The behavioural model introduced above defines the response likelihood, that is, the probability of 

observing measured responses when sampling responses from the model, condition on the set of 
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model parameters (𝒙1, … , 𝒙𝑁). The response likelihood can be simply expressed as a product of 

response probabilities over all measured responses 𝐴 = (𝒂1, … , 𝒂𝑁), presented offers 𝑂 =

(𝒐1, … , 𝒐𝑁), and states (point configurations) visited by each participant 𝑆 = (𝒔1, … , 𝒔𝑁) over the 

whole experiment 

𝑝(𝐴|𝑂, 𝑆, 𝒙1, … , 𝒙𝑁) = ∏ ∏ ∏ 𝑝(𝑎𝑏,𝑡
𝑛 |𝑠𝑏,𝑡

𝑛 , 𝑜𝑏,𝑡
𝑛 , 𝒙𝑛)

𝑇

𝑡=1

𝑀

𝑏=1

𝑁

𝑛=1

  (2.16) 

where b denotes experimental block, and t a specific trial within the block.  

To estimate the posterior distribution (per participant) over free model parameters, we applied the 

following approximation to the true posterior 

𝑝(𝒙1, … , 𝒙𝑁 , 𝝁, 𝝈| 𝐴, 𝑆, 𝑂) ≈ 𝑄(𝝁, 𝝈) ∏ 𝑄(𝒙𝑛)

𝑁

𝑛

 (2.17) 

𝑄(𝝁, 𝝈) =  
1

𝜎1 … 𝜎𝑑
𝒩2𝑑(𝒛; 𝝁𝑔 , 𝚺𝑔) for 𝒛 = (𝜇1, … , 𝜇𝑑 , ln 𝜎1 , … , ln 𝜎𝑑) (2.18) 

𝑄(𝒙𝑛) =  𝒩𝑑(𝒙𝑛;  𝝁𝑥
𝑛, 𝚺𝑥

𝑛) (2.19) 

Note that the approximate posterior captures posterior dependencies between free model 

parameters (in the true posterior) on both levels of the hierarchy using the multivariate normal and 

multivariate log-normal distributions. However, for practical reasons, we assume statistical 

independence between different levels of the hierarchy, and between participants. Independence 

between participants is justified by the structure of both response likelihood (responses are 

modelled as independent and identically distributed samples from conditional likelihood) and 

hierarchical prior (a priori statistical independence between model parameters for each participant). 

Finally, to find the best approximation of the true posterior given the functional constraints of our 

approximate posterior, we minimized the variational free energy F[Q] with respect to the parameters 

of the approximate posterior. 

− ln 𝑝(𝐴|𝑆, 0) = 𝐹[𝑄] − 𝐷𝐾𝐿(𝑄||𝑝) ≤ 𝐹[𝑄] =  f(𝝁𝑔 , 𝚺𝑔 , 𝝁𝑥
1 , 𝚺𝑥

1 , … , 𝝁𝑥
𝑁 , 𝚺𝑥

𝑁) (2.20) 

𝐹[𝑄] = ∫ d𝒙1 … d𝒙𝑁d𝝁d𝝈𝑄(𝝁, 𝝈) ∏ 𝑄(𝒙𝑛)

𝑁

𝑛

ln
𝑄(𝝁, 𝝈) ∏ 𝑄(𝒙𝑛)𝑁

𝑛

𝑝(𝐴|𝑂, 𝑆, 𝒙1, … , 𝒙𝑁)𝑝(𝒙1, … , 𝒙𝑁 , 𝝁, 𝝈) 
 (2.21) 

The optimization of the variational free energy F[Q] is based on the SVI implemented in the 

probabilistic programming language Pyro (Bingham et al., 2018) and the automatic differentiation 

module of PyTorch (Paszke et al., 2017), an open source deep learning platform.  
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As a final remark, we would like to point out that it is possible to use a different hierarchical prior 

(Polson & Scott, 2010), different parametrization of the hierarchical model (Bernardo et al., 2003) or 

different factorization of the approximate posterior (e.g., mean-field approximation). However, 

through extensive comparison of posterior estimates on simulated data, we have determined that 

the presented hierarchical model and the corresponding approximate posterior provide the best 

posterior estimate of free model parameters among the set of parametric models we tested (S2.1 

Notebook). 

2.5 Results 

To investigate how the balance between computationally costly forward planning and heuristic 

preferences changes as a function of temporal distance from the goals, participants performed 

sequences of actions in a novel sequential decision making task. The task employed a two-goal 

setting, where participants had to decide between approaching the two goals in a sequential or in a 

parallel manner. We first performed a standard behavioural analysis, followed by a model-based 

approach showing that participants use a mixture of strategy preference and forward planning to 

select their action.  

2.5.1 Standard behavioural analysis 

We first analysed the general performance of all participants and – for each miniblock and trial – 

compared it to the behaviour of an optimal agent possessing perfect knowledge of the task and 

performing full forward planning to derive an optimal policy that maximizes total reward. The 

motivation of this comparison was to detect differences between how the optimal agent and 

participants perform the task. These differences will motivate our model-based analysis below. To 

compute and compare optimal vs individual policies, all participants and the agent received exactly 

the same sequence of offers and start conditions. The difference in total reward between 

participants and agent was significant (m = -35.5, p < 0.001), where participants earned 388.5 Cents 

(SD = 13.6) and the agent earned 405 Cents. As expected, both participants and agent earned more 

money in the easy condition than in the medium condition and least in the hard condition (Fig 2.3, A, 

C). In the easy and medium condition, the agent earned significantly more than the participants 

(easy: M = 8.7 Cents, SD = 8.4, m = -33, p < 0.001; medium: M = 7.2 Cents, SD = 7.0, m = -30, p < 

0.001). In the hard condition, the total reward did not differ significantly between the participants 

and agent, m = 0.5, p > 0.99 (Fig 2.3, E). These results show that participant performance was 

generally close to the optimal agent but differed significantly in the easy and medium condition. 

Next, we analysed participants’ goal reaching success and compared it to the optimal agent. There 

were three possible outcomes in a miniblock: Achieving G1 (goal A or B), achieving G2 (A & B) or fail 
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(neither A nor B). The main experiment comprised 20 miniblocks of each difficulty level modulating 

difficulty to reach G2. As expected, participants reached on average G2 more often in the easy (M = 

71%, SD = 8%) than in the medium condition (M = 25%, SD = 6%), m = 44.5, p < 0.001. In the hard 

condition, participants reached G2 in only 1% (SD = 2%) of the miniblocks. Participants failed to reach 

any goal in 2% (SD = 3%) of the miniblocks in the medium and in 6 % (SD = 5%) of the miniblocks in 

the hard condition. They never failed in the easy condition (Fig 2.3, B). The agent reached G2 in 80% 

in the easy, in 30% in the medium and in 0% in the hard condition (Fig 2.3, D). Note that G2 cannot 

be reached in all miniblocks. We simulated all possible choice sequences (n = 2^15) for a given 

miniblock and evaluated whether G2 was theoretically possible.  According to these simulations, 90% 

G2 performance can be reached in the easy, 35% in the medium and 5% in the hard condition. 

When comparing participants’ goal reaching success with the agent, we found that, on average, 

there was a consistent pattern of deviations in the easy and medium conditions (Fig 2.3, F). In the 

easy condition, participants reached G2 on average 9% (SD = 8%) less often than the agent (m = -33, 

p < 0.001), but reached G1 9% (SD = 8%) more often (m = 33, p < 0.001). In the medium condition, 

participants reached G2 on average 6% (SD = 6%) less often than the agent (m = -26, p < 0.001) but 

reached G1 4% (SD = 7%) more often (m = 16.5, p < 0.001). While the agent never failed, participants 

had a 2% (SD = 3%) fail rate (m = 11.5, p < 0.001). In the hard condition, participants reached G2 on 

average 0.6% (SD = 1.6%) more often than the agent (m = 5.5, p < 0.001). G1 (m = -7, p = 0.087) and 

fail-rate (m = 3.5, p = 0.42) did not differs significantly between participants and agent. In summary, 

these differences in successful goal reaching between participants and the agent explains the 

difference in accumulated total reward: Participants obtained less reward than the agent because on 

average they missed some of the opportunities to reach G2 in the easy and medium condition and 

sometimes even failed to achieve any goal in the medium and hard condition. 
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Fig 2.3. Standard analyses of total reward and comparison to the optimal agent. (A) Average total 

reward across participants. The three conditions are colour-coded (easy = red, medium = green, blue 

= hard) and the average over conditions is shown in grey.  Error bars depict the standard deviation 

(SD). (B) Proportion of successful goal-reaching averaged across participants, for each of the three 

conditions. We plot the proportion of reaching, at the end of a miniblock, a single goal (G1), both 

goals (G2), or no goal (fail). The fourth block of bars in grey represents the proportions averaged over 

all three conditions. Error bars depict SD. (C) Simulated total reward of the optimal agent. (D) The 

goal-reaching proportions of the optimal agent. (E) Average difference between participants and 

agent with error bars depicting SD. (F) Averaged difference of proportion success between 

participants and agent with error bars depicting SD. One can see that the average goal-reaching 

proportions of participants were close to the agent’s proportions. However, participants, on average, 

reached G2 less often than the agent. Asterisks indicate differences significantly greater than zero 

(Sign-test, * ≙ p < 0.05, ** ≙ p < 0.01, *** ≙ p < 0.001). 

How can these differences in goal-reaching success be explained? To address this, we used the 

mixed-offer trials to identify which strategy a participant was pursuing in a given trial and compared 

the strategy choice to what the agent would have done in this trial. We classified strategy choices as 

evidence either of a parallel or a sequential strategy. With the parallel strategy (g2), participants 

make choices to pursue both goals in a parallel manner, while with a sequential strategy (g1), 
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participants make choices to reach first a single goal and then the other. We inferred that 

participants used a g2-choice for a specific mixed-offer trial when the difference between the points 

of the two bars was minimized, while we inferred a g1-choice when the difference between points 

was maximized (see Methods). We categorized a participant’s g2-choice as suboptimal when the 

optimal agent would have made a g1-choice in a specific trial and vice versa. Fig 2.4, A-D shows the 

proportions of suboptimal g-choices in mixed-offer trials. In the easy condition, participants made 

barely any suboptimal g2-choice (mean = 0%, SD = 0.001%), but 29% (SD = 10%) suboptimal g1-

choices (Fig 2.4, A). This means that participants, on average, preferred a sequential strategy more 

often than would have been optimal. In the medium condition participants made on average 6% (SD 

= 3%) suboptimal g2-choices and 28% (SD = 11%) suboptimal g1-choices. Similar to the easy 

condition, participants, on average, preferred a sequential strategy where a parallel strategy would 

have been optimal. In the hard condition, this pattern reversed. Participants made on average 40% 

(SD = 12%) suboptimal g2-choices, relative to the agent, and 11% (SD = 6%) suboptimal g1-choices. 

Participants’ suboptimal g-choices were also reflected in goal reaching success. In the easy and 

medium condition, suboptimal g1-choices, relative to the agent, resulted in a higher proportion of 

reaching G1, and a lower proportion of reaching G2. In the hard condition, suboptimal g2-choices led 

to occasional fails and a tiny margin of reaching G2. However, despite suboptimal g2-choices, 

participants still reached G1 in 93% (SD = 6%) of the miniblocks.  

As the first test of our prediction that participants tend to use more forward planning when 

temporally proximal to the goal, we analysed suboptimal decisions as a function of trial time. As 

expected, suboptimal decisions, relative to the agent, decreased over trial time (Fig 2.4, B). While in 

the first trial, 42% (SD = 19%) of participants’ g-choices deviated from the agent’s g-choices, 

participant behaviour converged to almost optimal performance towards the end of the miniblock, 

with only 4% deviating g-choices (SD = 7%). We also simulated a random agent that accepts all basic 

A or B offers but guesses on mixed offers (S6-7 Fig). S2.7 Fig B shows that the random agent makes 

approximately 50 % suboptimal g-choices across all trials in the miniblock. That means participants 

used non-random response strategies, i.e. planning or heuristics, since their pattern of suboptimality 

across trials deviated from the straight-line pattern of the random agent. 

In the hard condition, the number of suboptimal g2-choices similarly decreased, but not in the easy 

and medium condition (Fig 2.4, C). The number of suboptimal g1-choices decreased across trials in 

the easy and medium, but not in hard condition (Fig 2.4, D). Note that in easy and the medium 

conditions, opportunities to make suboptimal g2-choices are generally scarce, because the difference 

between action values  𝐷𝐸𝑉 = 𝑄𝐺(𝑔2) − 𝑄𝐺(𝑔1) was mostly positive, which means that a g2-choice 
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was mostly optimal. Similarly, in the hard condition, as there was a low number of opportunities to 

make suboptimal g1-choices, there was no clear decrease in the number of suboptimal g1-choices. 

Although these findings of diminishing suboptimal choices over the course of miniblocks may be 

explained by the participants’ initial employment of a suboptimal heuristic, there is an alternative 

explanation because we used an optimal agent, which uses a max operator to select its action: If this 

agent computes, by using forward planning, a tiny advantage in expected reward of one action over 

the other, the agent will always choose in a deterministic fashion the action with the slightly higher 

expected reward. Therefore, at the beginning of the miniblock, where the distance to the final trial is 

largest, the difference between goal choice values  𝐷𝐸𝑉 =  𝑄𝐺(𝑔2) − 𝑄𝐺(𝑔1) (S2.5 Fig) is close to 

0. The reason for this is that a single g2-choice at the beginning of the miniblock does not increase 

the probability for G2-success by much. However, when only few trials are left, a single g2-choice 

might make the difference between winning or losing G2. Since 𝐷𝐸𝑉𝑠 are close to 0 at the initial 

trials we cannot exclude the possibility yet that participants actually may have used optimal forward 

planning just like the agent but did not use a max operator. Instead, participants may have sampled 

an action according to the computed probabilities of each action to reach the greater reward in the 

final trial. Such a sampling procedure to select actions would also explain the observed pattern of 

diminishing suboptimal g-choices over the miniblock (Fig. Fig 2.4 B-C). To answer the question, 

whether there is actually evidence that participants use heuristics, when far from the goal, even in 

the presence of probabilistic action selection of participants, we now turn to a model-based analysis. 

 

Fig 2.4. Suboptimal choices. (A) Proportions of suboptimal g1-choices (g1) and suboptimal g2-

choices (g2), averaged over participants. Participants tend to make suboptimal g1-choices in the easy 

and medium condition while this pattern reverses in the hard condition. Error bars depict SD. 

Conditions are colour coded. (B) Suboptimal g-choices as a function of trial averaged over 

participants. Shaded areas depict SD. (C) Suboptimal g2-choices as a function of trial averaged over 
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participants. (D) Suboptimal g1-choices as a function of trial averaged over participants. In both C 

and D, one can see that participants made more suboptimal g-choices at the beginning of the 

miniblock than close to the final trial. Shaded areas depict SD. 

2.5.2 Model-based behavioural analysis  

To infer the contributions of participants’ forward planning and heuristic preferences, we conducted 

a model-based analysis. If we find that participants’ strategy preference 𝜃 is smaller or larger than 

zero, we can conclude that participants indeed used a heuristic component to complement any 

forward planning. This is especially relevant for choices early in the miniblock as 𝐷𝐸𝑉 values are 

typically close to zero. Indeed, when inferring the four parameters for all 89 participants using 

hierarchical Bayesian inference, we found that participants’ g-choices were influenced by a heuristic 

strategy preference in addition to a forward planning component (Fig 2.5, A). For 74 out of 89 

participants, we found that the 90% credibility interval (CI) of the posterior over strategy preference 

did not include zero. 68 of these participants had a positive strategy preference, meaning they 

preferred an overall strategy of pursuing both goals in parallel. Six of these participants had a 

negative strategy preference, meaning they preferred to pursue both goals sequentially. The median 

group hyperparameter of strategy preference was 0.55 (90% CI = [0.47, 0.63]). For example, a 

participant with this median strategy preference, in a mixed-offer trial where 𝐷𝐸𝑉 = 0, would make 

a g2-choice with 63% probability, whereas a participant without a strategy preference bias, i.e.  𝜃 =

0, would make a g2-choice with 50% probability. After the experiment, we had asked participants 

whether they used any specific strategies to solve the task and to give a verbal description of the 

used strategy. Reports reflected three main patterns: Pursuing one goal after the other (sequential 

strategy), promoting both goals in a balanced way (parallel strategy), and switching between 

sequential and parallel strategy, depending on context (mixed strategy). Reported strategies are in 

good qualitative agreement with the estimated strategy preference parameter (S2.8 Fig), supporting 

our interpretation of this parameter. Notably, the task instructions, given to the participants prior to 

the experiment, did not point to any specific heuristic (S2.1 Text). Altogether, the non-zero strategy 

preference in 83% of participants indicates that suboptimal decisions within a miniblock (see Fig 2.4) 

are not only caused by probabilistic sampling for action selection, but also by the use of a heuristic 

strategy preference.  

As expected, we found that the 𝐷𝐸𝑉 (see Table 2.1) derived by forward planning influenced action 

selection (median group hyperparameter of the inferred precision 𝛽 = 1.82, 90% CI = [1.45, 2.3], Fig 

2.5, B). For example, a hypothetical participant with parameters similar to the group 

hyperparameters (𝜃 =  0.55 and 𝛽 =  1.82), when encountering a 𝐷𝐸𝑉 = 0.5, would make a g2-

choice with 82% probability. Increasing 𝐷𝐸𝑉 by 1 would increase the g2-choice probability to 96%. In 
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contrast, a participant with low precision but the same median strategy preference (𝜃 =  0.55 and 

𝛽 =  0.5), when encountering a 𝐷𝐸𝑉 = 0.5, would make a g2-choice with 69% probability. 

Increasing 𝐷𝐸𝑉 by 1 would increase g2-choice probability to 79%. We found evidence only for weak 

discounting of future rewards, as for most participants the inferred discount was close to 1 (median 

of the inferred discount parameter 𝛾 = 0.984, 90% CI = [0.978, 0.988], Fig 2.5, C). We found that 

some participants used a reward ratio different from the objective value of 1 (CI not containing 1). 

Twelve participants had a reward ratio greater than 1 and 17 participants had a reward ratio smaller 

than 1. However, the median group hyperparameter of the inferred reward ratio was close to the 

objective value of 1 (𝜅 = 1.05, 90% CI = [0.99, 1.11], Fig 2.5, D). A reward ratio of 1.2 means, that 

participants behaved as if the value of achieving G2 would be 2.4 times the value of achieving 

G1(when in reality the reward is only double as high). While strategy preference has its greatest 

influence during the first few trials of a miniblock, the reward ratio has an influence only when 

forward planning, i.e. changes the 𝐷𝐸𝑉, and will therefore affect action selection most during the 

final trials of a miniblock. In addition, we found only low posterior correlation between the strategy 

preference and reward ratio parameter, indicating that these two parameters model distinct 

influences on goal reaching behaviour. 

 

Fig 2.5. Summary of inferred parameters of the four-parameter model for all 89 participants. We 

show histograms of the median of the posterior distribution, for each participant. Solid red lines 

indicate the median of the group hyperparameter posterior estimate with dashed lines indicating 

90% credibility intervals (CI). (A) Histogram of strategy preference parameter 𝜃. (B) Histogram of 

precision parameter 𝛽 (last bin containing values > 8). (C) Histogram of discount parameter 𝛾. (D) 

Histogram of reward ratio parameter 𝜅. 

To show that our model with constant parameters is able to capture a dynamic shift from heuristic 

decision making to forward planning we conducted two sets of simulations where we systematically 

varied the response precision β and the strategy preference parameter θ. First, we simulated 

behaviour where we varied β between 0.25 and 3 with θ, 𝛾, and 𝜅 sampled from their fitted 

population mean (S2.1-2.2 Movie). S2.2 Movie, B shows that the higher 𝛽, the fewer suboptimal g-
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choices are made towards the end of the miniblock. Second, we simulated behaviour where we 

varied θ varied between -1 and 1 with 𝛽, 𝛾, and 𝜅 sampled from their fitted population mean (S2.3-

2.4 Movie). S2.4 Movie, B shows that a change in θ affects the number of suboptimal g-choices made 

at the beginning but not at the end of the miniblock. To understand these results, one has to 

consider that, due to the experimental design, the differential expected value (𝐷𝐸𝑉) computed by 

forward planning is correlated with trial number (S2.5 Fig). The average of absolute 𝐷𝐸𝑉𝑠 (𝛾 =

1, 𝜅 = 1) was M = 0.12 (SD = 0.12) in the first third, M = 0.29 (SD = 0.29) in the second third and M = 

0.89 (SD = 1.38) in the last third of the miniblock. Given these experimental constraints, it becomes 

apparent that the fitted group hyperparameters 𝜃 =  0.55 and 𝛽 =  1.82 suggest, that participants’ 

behaviour is best explained by a shift from heuristic decision making to forward planning. For small 

𝐷𝐸𝑉𝑠, the influence of the fitted 𝛽 on choice probability is marginal; therefore, the relative influence 

of the fitted strategy preference parameter θ is high, and behaviour is driven by heuristic choices. For 

higher trial numbers, i.e. closer to the end of the miniblock, 𝐷𝐸𝑉𝑠 tend to be high so that the model-

based value (𝛽 ∗ 𝐷𝐸𝑉) is large relative to the strategy preference θ; therefore, towards the end of 

the miniblock behaviour is driven by forward planning, with a transition from one decision mode to 

another in between. If participants would have planned ahead already in early trials, this would have 

been reflected in a large precision parameter (β ≫ θ), since small 𝐷𝐸𝑉𝑠 in early trials, multiplied by 

large β, could dominate any heuristic bias. We also implemented a model with changing parameters 

over trials and compared it to the constant model. Parameters were fit separately for three partitions 

of the miniblock, i.e. early (trials 1- 5), middle (trials 6-10) and late trials (11-15). Model comparisons 

showed that this model with changing parameters had lower model evidence compared to the model 

with constant parameters (S2.9 Fig).We interpret these results as further evidence that the described 

constant parameterization is sufficient to describe a hidden shift from using a heuristics to forward 

planning.  

Finally, as an additional test of the hypothesis that participants rely more on heuristic preferences 

when the goal is temporally distant, we conducted a multiple regression analysis (Fig 2.6, A). To do 

this, we divided the data into the first (first 7 trials) and the second half (last 8 trials) of miniblocks, 

and computed, for each participant the proportion of g2-choices in the mixed-offer trials. We fitted, 

across participants, these proportions of g2-choices against 6 regressors: strategy preference, 

precision, discount rate, reward ratio, a dummy variable coding for the first and second miniblock 

half and interaction between strategy preference and miniblock half. We found a significant 

interaction between strategy preference and miniblock-half (p < 0.001), demonstrating that strategy 

preference is more predictive for the proportion of g2-choices in the first half of the miniblock than 

in the second half. Fig 2.6, B visualizes the interaction effect showing that the slope of the marginal 

regression line for the first half of the miniblock is greater than the slope of the marginal regression 
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line for the second half of the miniblock. This finding provides additional evidence that participants 

rely on heuristic preferences when the goal is temporally far away but use differential expected 

values (𝐷𝐸𝑉) derived by forward planning when the goal is closer.  

 
Fig 2.6. Strategy preference is more predictive for participant’s proportion of g2-choices in the first 

than in the second half of the miniblock. (A) Linear regression of proportion g2-choice against 

parameters from the four-parameter model, a dummy variable coding for miniblock-half and 

interaction between miniblock-half and strategy preference. The significant interaction term 

supports the hypothesis that the influence of strategy preference on g2-choice proportion is greater 

in the first than in the second half of the miniblock. Error bars represent SE. Asterisks indicate 

coefficients significantly different from 0 (t-test, * ≙ p < 0.05, ** ≙ p < 0.01, *** ≙ p < 0.001). (B) 

Strategy preference plotted against the proportion of g2-choices in the first half of the miniblock 

(black) and in the second half of the miniblock (red). Solid lines represent marginal regression lines. 

In addition, we conducted model comparisons, posterior predictive checks and parameter recovery 

simulations to test whether our model is an accurate and parsimonious fit to the data. First, we 

compared variants of our model, where we fixed individual parameters (S2.9 Fig). Adding 𝜃 and 𝛽 

increased model evidence, confirming their importance in explaining participant behaviour. The 

three-parameter model (𝜃, 𝛽, 𝜅) had the highest model evidence among all 16 models. Adding 𝛾 did 

not increase model evidence. This result is consistent since we found only little evidence for 

discounting when fitting the parameters, see Fig. Fig 2.5 C. To test whether participants used 

condition-specific response strategies (e.g., use heuristics in the easy and hard but plan forward in 

the medium difficult condition) we estimated model parameters separately for conditions. However, 

the condition-wise model had lower model evidence compared to the conjoint model, indicating that 

participants use a condition-general approach to arbitrate between using a heuristic and planning 

ahead. Second, we simulated data using the group mean parameters as inferred from the 
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participants’ data and compared it to the observed data. Visual inspection shows that both the 

simulated performance pattern (S2.10 Fig) and the simulated frequency of suboptimal g-choices 

(S2.11 Fig) closely resemble the experimentally observed patterns (Fig. 3 and 4). Third, we simulated 

data using participants’ posterior mean and tested whether we could reliably infer parameters (S2.1 

Notebook). Results showed that the inferred 𝛽, 𝜃 and 𝜅 align with the true parameter value, but 

simulation-based calibration (Talts et al., 2018) suggests that estimates of 𝛾 are biased. Taken 

together, our model provides a good fit to the data, where the data are informative about the three 

parameters 𝛽, 𝜃 and 𝜅. 

We also tested whether participants showed learning effects in the main experimental phase. In a 

first linear model, the depended variable was the total reward and the predictor was the 

experimental block number (miniblock 1-20, miniblock 21-40, miniblock 41-60). The analysis revealed 

a significant but small main effect of experiment block (𝛽 = 5.4, SE = 0.5, p < 0.001). In a second 

logistic model the dependent variable was suboptimal goal choice (1 = suboptimal, 0 = optimal) and 

the predictor was experiment block. The second analysis revealed a significant but small main effect 

of experiment block on the probability to make a suboptimal g-choice (𝛽 = -0.084, SE = 0.02, p < 

0.001). Furthermore, we fitted the three parameter model (𝜃, 𝛽, 𝜅) separately for experiment blocks. 

Model comparisons revealed that the experiment block-wise model had lower model evidence 

compared to the conjoint model (S2.9 Fig.).  

As a final control analysis, we used logistic regression to establish how the absolute difference 

between A- and B-points affects goal choice as a function of the number of trials remaining in the 

miniblock. If participants rely on a fixed strategy preference when far from the goal, there should be 

no effect of absolute score difference on goal choice at the start of miniblocks. In this model the 

depended variable was goal choice (1 = g2, 0 = g1) and the predictors were absolute score difference 

(|𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵| ∈ [0. .15]), miniblock-half (1 = trial 1-7, 0 = trial 8-15) and the interaction term 

absolute score difference*miniblock-half. There was a significant main effect of absolute score 

difference (𝛽 = 0.14, SE = 0.008, p < 0.001) and miniblock-half (𝛽 = 0.29, SE = 0.039, p < 0.001). 

Importantly, the analysis revealed a significant interaction between miniblock-half and absolute 

score difference (𝛽 = -0.2, SE = 0.013, p < 0.001). This means that goal choice was more affected by 

the absolute score difference in the second half the miniblock compared to the first half. The analysis 

supports our conclusion that participants relied on a heuristic strategy preference when far from the 

goal.  
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2.6 Discussion 

In the current study, we investigated how humans change the way they decide what goal to pursue 

while approaching two potential goals. To emulate real life temporally extended decision making 

scenarios of goal pursuit, we used a novel sequential decision making task. In this task environment, 

decisions of participants had deterministic consequences, but the options given to participants on 

each of the 15 trials were stochastic. This meant that especially during the first few trials, participants 

could not predict with certainty what goal was achievable. Using model-based analysis of behavioural 

data we find that most participants, during the initial trials, relied on computationally inexpensive 

heuristics and switched to forward planning only when closer to the final trial.  

We inferred the transition from a heuristic action selection to action selection based on forward 

planning using a model parameter that captured participants’ preference for pursuing both goals 

either in a sequential or parallel manner. This strategy preference had its strongest impact for the 

first few trials, when participants, due to the stochasticity of future offers, could not predict well 

which of the two available actions in a mixed trial would enable them to maximize their gain. This can 

be seen from Eq. 2.11 where two terms contribute to making a decision: the term containing the 

differential expected value (𝐷𝐸𝑉) and the strategy preference 𝜃. In our computational model, the 

𝐷𝐸𝑉 is the difference between the expected value of a sequential strategy choice and a parallel 

strategy choice. The 𝐷𝐸𝑉 enables the agent to choose actions which maximize the average reward 

gain in a miniblock (see methods). Critically, this 𝐷𝐸𝑉 is typically close to 0 in the first few trials, i.e. 

there is high uncertainty on what action is the best one. In this situation, the strategy preference 

mostly determines the action selection of the agent. In our model, we computed the 𝐷𝐸𝑉 by using 

forward planning, where the agent hypothetically runs simulations through all remaining future trials 

until the end of a miniblock, i.e. to the 15th trial. The number of state space trajectories to be 

considered in these simulations scales exponentially with the number of remaining trials – and so 

does in principle the computational costs needed to simulate these trajectories. Therefore, full 

forward planning would be both prohibitively costly and potentially useless when the deadline is far 

away, rendering simpler heuristics (Soltani et al., 2016) the more appropriate alternative.  

It is an open question what heuristic participants actually used. In our model, the strategy preference 

parameter simply quantifies a preference for a parallel or sequential strategy and biases a 

participant’s action selection accordingly. This may mean that participants had a prior expectation 

whether they are going to reach G2 or just G1. Given this prior, participants could choose their action 

without any forward planning. In other words, to select an action in a mixed trial, participants simply 

assumed that they are going to reach, for example, G2. This simplifies action selection tremendously 

because, under the assumption that G2 will be reached, the optimal action is to use the parallel 
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strategy at all times. To an outside observer, a participant with a strong preference for a parallel 

strategy may be described as overly optimistic, as this participant would choose g2-choices even if 

reaching G2 is not very likely, e.g. in the hard condition. Conversely, a participant with a strong 

preference for a sequential strategy may be described as too cautious, e.g. because that participant 

chooses one-goal actions in the easy condition (see S2.12 Fig for two example participants). 

Importantly, the difference in total reward between the agent and the participants is only about 5% 

(see Fig 2.3, E). This means that even though participants used a potentially suboptimal strategy 

preference, the impact on total reward is not that large. This is because, as we have shown, later in 

the miniblock, when 𝐷𝐸𝑉𝑠 become larger and are more predictive of what goal can be reached, 

participants choose their actions accordingly. Although we do not quantify the relative costs of full 

forward planning versus the observed mixture of heuristic and forward planning, we assume that an 

average loss of 5% of the earnings is small as compared to the reduction of computational costs 

when using heuristics.  

There were two important features of our sequential decision making task: The first was that we 

used a rather long series of 15 trials to model multiple goal pursuit, where typically sequential 

decision making tasks would use fewer trials, e.g. 2 in the two-step task (Daw et al., 2011) with 

common values around  5 (Korn & Bach, 2018) to 8 trials (Kolling et al., 2014; Schwartenbeck et al., 

2015) per miniblock. The reason why we chose a rather large number of trials is that this effectively 

precluded the possibility that participants can plan forward and ensure that participants were 

exposed at least to some initial trials where they had to rely on other information than forward 

planning. This initial period when participants have to select actions without an accurate estimate of 

the future consequences of these actions is potentially most interesting for studying meta-decisions 

about how we use heuristics when detailed information about goal reaching probabilities is scarce. It 

is probably in this period of uncertainty during goal reaching, when internal beliefs and preferences 

have their strongest influence. 

The second important feature of our task was that participants had to prioritize between two goals. 

This is a departure from most sequential decision making tasks, where there is typically a single goal, 

e.g. to collect a minimum number of points, where the alternative is a fail (Kolling et al., 2014). In our 

task, participants could reach one of two goals, which enables addressing questions about how 

participants select and pursue a specific goal, see also (Ballard et al., 2016). Our findings complement 

work investigating  behavioural strategies for pursuing multiple goals, e.g. (Orehek & Vazeou-

Nieuwenhuis, 2013), showing that pursuit strategies depend on environmental characteristics, 

subjective preferences and changes in context when getting closer to the goal. In line with our 

findings, a recent study (Juechems et al., 2019) showed that decisions whether to redress the 



45 
 

imbalance between two assets or to focus on a distinct asset during sequential goal pursuit were 

best fit by a dynamic programming model with a limited time horizon of 7.5 trials (20 trials would be 

the optimum). In future research, the pursuit of multiple goals in sequential decision making tasks 

may also be a basis for addressing questions about cognitive control during goal-reaching, e.g. how 

participants regulate the balance between stable maintenance and flexible updating of goal 

representations (Goschke, 2014). 

In the current experiment, time (trial within miniblock) was correlated with both, planning 

complexity (exponential growth of the planning tree) and the magnitude of 𝐷𝐸𝑉𝑠 (S2.5 Fig). 

However, complexity and time can, in principle be dissociated. For example, a temporally distant goal 

might have only low planning complexity because one must consider only a few decision sequences 

leading to the goal. Conversely, a temporally proximate goal might have high planning complexity 

because of a large number of potential actions sequences that may lead to the goal. Moreover, in 

contrast to the current task, there might be situations, in which the early decisions matter most. This 

would be reflected in large 𝐷𝐸𝑉𝑠 at beginning of the goal reaching sequence. In future research, by 

testing sequential tasks with varying transition structure, one could selectively test how 𝐷𝐸𝑉- 

magnitude, time and complexity influences the arbitration of forward planning and the use of 

heuristics. 

It is unclear what mechanism made participants actually use a strategy preference different from 

zero in our task. It is tempting to assume that participants might have used their usual approach, 

which they might apply in similar real-life situations, to select their goal strategies when the 

computational costs of forward planning are high and the prediction accuracy is low. In other words, 

participants who had a preference for a parallel strategy might either show a tendency towards 

working on multiple goals at the same time or entertain the belief that tasks should be approached 

with an optimistic stance. Conversely, participants with a preference for a sequential strategy might 

have made good experiences with using a more cautious approach and would tend to pursue one 

goal after the other.  

We would like to note that the proposed model does not explicitly model the arbitration between 

forward planning and heuristic decision making. The computational model to fit participant 

behaviour uses at its core full forward planning as the optimal agent does. The effect of strategy 

preference just changes the action selection result, but the underlying computation to determine the 

𝐷𝐸𝑉 is still based on forward planning. Clearly, if a real agent used our model, this agent would not 

save any computations because forward planning is still used for all trials. The open question is how 

an agent makes a meta-decision to not use goal-directed forward planning but to rely on heuristics 

and other cost-efficient action selection procedures (Boureau et al., 2015). To make this meta-
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decision, an agent cannot rely on the 𝐷𝐸𝑉 because this value is computed by forward planning. An 

alternative way would be to use an agent’s prior experience to decide that the goal is still too 

temporally distant to make an informed decision with an acceptable computational cost. Such a 

meta-decision would depend on several factors, e.g. the relevance of reaching G2, intrinsic capability 

and motivation of planning forward, or a temporal distance parameter which signals urgency to start 

planning forward. In the future we plan to develop such meta-decision-making models and predict 

the moment at which forward planning takes over the action selection process. 

It is also possible that participants use, apart from simple heuristics, other approximate planning 

strategies to reduce computational costs. For example, one could sample only a subset of sequences 

to compute value estimates. Indeed, in another study it was found that participants prune a part of 

the decision tree in response to potential losses, even if this pruning was suboptimal (Huys et al., 

2012). Another important point is that the planning process itself might be error-prone and therefore 

value calculations over longer temporal horizons may be noisier. This could presumably account for 

temporal modulations of the precision parameter β. In future work one could test for evidence of 

alternative planning algorithms that allow to sample subsets of (noisy) forward planning trajectories 

to further delineate how humans deal with computational complexity in goal-directed decision 

scenarios. Furthermore, in the current analysis, we tested a model, where we fitted parameters 

separately for early, middle and late trials of the miniblock, but found that this time-variant model 

had lower model evidence compared to the constant model. We interpreted these results as further 

evidence that the described constant parameterization is sufficient to describe a hidden shift from 

using a heuristics to forward planning. Nevertheless, it is possible that there is an alternative dynamic 

model that explains the data better. In our analysis we decided to split one miniblock arbitrarily into 

three time bins - one could have also considered other splits, e.g. into two. Furthermore, it is possible 

that these time bins have a different structure from subject to subject (e.g. for some subject, the first 

ten trials will be associated with one parameter value and the last 5 with another and for some other 

subject it could be the first 7 and last 8 trials). However, we will leave the detailed exploration of 

dynamic model parametrisation for the future. 

Taken together, the present research shows that over prolonged goal-reaching periods, individuals 

tend to behave in a way that approaches the behaviour of an optimal agent, with noticeable 

differences early in the goal-reaching period, but nearly optimal behaviour when the goal is close.  It 

also highlights the potential of computational modelling to infer the decision parameters individuals 

use during different stages of sequential decision making. Such models may be a promising means to 

further elucidate the dynamics of decision making in the pursuit of both laboratory and everyday life 

goals.     
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2.7 Supporting information 

S2.1 Table. Classification of accept-wait responses into either two-goal-choices (g2) or one-goal-
choices (g1). 

Offer Points  Response Classification  

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 > 1  accept g1 
Ab 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 > 1  wait g2 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 < −1  accept g2 
Ab 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 < −1  wait g1 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 1  accept g1 
Ab 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 = 1  wait g2 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = −1  accept nan 
Ab 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 = −1  wait nan 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 0  accept g1 
Ab 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 = 0  wait g2 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 > 1  accept g2 
aB 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 > 1  wait g1 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 < −1  accept g1 
aB 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 < −1  wait g2 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 1  accept nan 
aB 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 = 1  wait nan 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = −1  accept g1 
aB 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 = −1  wait g2 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 0  accept g1 
aB 𝑃𝑡𝑠𝑡

𝐴 − 𝑃𝑡𝑠𝑡
𝐵 = 0  wait g2 

 

 

S2.1 Fig. Occurrence of offer types across all 900 trials. 

 

S2.2 Fig. Occurrence of offer types binned with respect to trial. 
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S2.3 Fig. Occurrence of offer types binned with respect to miniblock. 

 

S2.4 Fig. Occurrence of offer types binned with respect to miniblock and difficulty. 
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S2.5 Fig. Average absolute (A) and signed (B) differential expected value (𝐷𝐸𝑉) per trial and 

condition. Discount and reward ratio had been fixed (𝛾 = 1,  𝜅 = 1). Average absolute 𝐷𝐸𝑉𝑠 at the 

beginning of the miniblock are smaller than in the end, indicating the relative importance of 

decisions close to the final trial of miniblocks. Conditions are colour coded. The shaded areas 

represent SD. 

 

S2.6 Fig.  Simulated goal success and total reward of a random agent that always accepts basic 

offers but guesses for mixed offers (𝜃 = 0, 𝛽 → 0, 𝛾 = 1, 𝜅 = 1). (A) Average total reward across 

agent instances (n =1000). (B) Proportion of successful goal-reaching, averaged across agent 

instances, for each of the three conditions. We plot the proportion of reaching, at the end of a 

miniblock, a single goal (G1), both goals (G2), or no goal (fail). The random agent achieves fewer G2-

successes in easy and medium than the participants but fails more often in medium and hard. The 

three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average over 

conditions is shown in grey. Error bars depict SD. 
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S2.7 Fig. Simulated suboptimal g-choices of a random agent that always accepts basic offers but 

guesses for mixed offers (𝜃 = 0, 𝛽 → 0, 𝛾 = 1, 𝜅 = 1). (A) Proportions of suboptimal g1-choices (g1) 

and suboptimal g2-choices (g2), averaged over agent instances (n =1000). The random agent makes 

many suboptimal g1-choices in the easy and medium and many suboptimal g2-choices in the hard 

conditions. Summing together g1 and g2 yields approximately 50% suboptimal g-choices. (B) 

Suboptimal g-choices as a function of trial averaged over agent instances. The random agent makes 

approximately 50% suboptimal g-choices across all trials in the miniblock. If participants use non-

random response strategies, i.e. planning or heuristics, their pattern of suboptimality across trials 

should deviate from the straight-line pattern of the random agent. (C) Suboptimal g2-choices as a 

function of trial averaged over agent instances. (D) Suboptimal g1-choices as a function of trial 

averaged over agent instances. Summing together g1 (D) and g2 (C) yields approximately 50% 

suboptimal g-choices across trials.  Error bars and shaded areas depict SD. Conditions are colour 

coded.  

 

S2.8 Fig. Qualitative comparison of participants' reported strategy use and fitted strategy 

preference parameter. Participants who reported the use of a sequential strategy had lower 

estimated strategy preference, including the most negative values, than participants who reported 

the use of a parallel strategy. Participants who reported mixed use of a parallel and sequential 

strategy had greater strategy preference than the sequential group but lower estimates than the 
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parallel group. The plot shows 80 of 89 participants whose verbal reports matched with one of the 

three strategy categories.  

 

S2.9 Fig. Comparing Elbo (evidence lower bound) between different model variants. White 

numbers represent the rank from highest to lowest Elbo. Model comparisons showed that the three 

parameter model (𝜃, 𝛽, 𝜅) had the highest model evidence. Adding 𝛾 did not increase model evidence 

(𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝜃𝛽𝛾𝜅 = −44). Estimating model parameters separately for miniblock segments (trial 

1-5, trial 6-10, trial 11-15; prefix ‘s_’ in the figure) had lower model evidence compared to the 

winning model (𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝑠_𝜃𝛽𝜅 = −294). Estimating model parameters separately for 

conditions (easy, medium, hard; prefix ‘c’ in the figure) had lower model evidence compared to the 

winning model (𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝑐_𝜃𝛽𝜅 = −94). Estimating model parameters separately for 

experiment blocks (miniblock 1-20, miniblock 21-40, miniblock 41-60; prefix ‘b’ in the figure) had also 

lower model evidence compared to the winning model (𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝑠_𝜃𝛽𝜅 = −48). Bars in the 

plot depict Elbo averaged over the last 20 posterior samples.  

 

S2.10 Fig.  Posterior predictive checks: Simulated goal success and total reward closely resemble 

observed participant behaviour. (A) Average total reward across samples (n = 1,000). (B) Proportion 

of successful goal-reaching, averaged across samples, for each of the three conditions. We plot the 
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proportion of reaching, at the end of a miniblock, a single goal (G1), both goals (G2), or no goal (fail). 

The three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average 

over conditions is shown in grey. Error bars depict SD. Data were generated using 1,000 posterior 

samples from the group hyper parameters. 

 

S2.11 Fig.  Posterior predictive checks: Simulated suboptimal g-choices closely resemble observed 

participant behaviour. (A) Proportions of suboptimal g1-choices (g1) and suboptimal g2-choices (g2), 

averaged over samples (n =1,000). (B) Suboptimal g-choices as a function of trial averaged over 

samples. (C) Suboptimal g2-choices as a function of trial averaged over samples. (D) Suboptimal g1-

choices as a function of trial averaged over samples. Error bars and shaded areas depict SD. 

Conditions are colour coded. Data were generated using 1,000 posterior samples from the group 

hyper parameters. 

 

S2.12 Fig. Comparison of suboptimal g-choices between a low strategy preference and high 

strategy preference participant. The plot shows proportions of suboptimal g1-choices (g1) and 

suboptimal g2-choices (g2) (A) of the participant with the lowest fitted strategy preference (𝜃 =

−0.36) and (B) of the participant with the highest fitted strategy preference (𝜃 = 1.84). The low 

strategy preference participant prefers a sequential strategy leading to suboptimal g1-choices in the 

easy and medium condition. The participant with a high strategy preference parameter prefers a 

parallel strategy, resulting in a few suboptimal g1-choices in easy in and medium but a large number 

of suboptimal g2-choices in the hard condition.  

S2.1 Text: Task instructions (translated from German)  
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• Dear participant, your task in this experiment is to reach goals. Within a block, consisting of 

15 trials, you can either reach goal A, goal B or both goals at the same time. For one reached 

goal you will gain additional 5 Cents and for two reached goals additional 10 Cents. Your task 

is to obtain as much money as possible.  

• To reach goals, you must collect points. You can get points by accepting an offer. Some offers 

however, might have a negative effect on the state of a goal. Your task is to decide in every 

trial, whether to accept an offer or wait for the next offer. Press “up arrow” to accept an 

offer and “down arrow” to wait.  

• Important: Please decide deliberately but speedily. If you decide too slowly, you will get a 

notification. After every 5 notifications, 50 Cents will be subtracted from your bonus-payout. 

(The experiment starts with a training phase, in which no money can be lost.)  

• More about the goals: Your goal progress will be represented by a bar, which is labelled with 

A or B. A goal counts as achieved, if one of the bars reaches or surpasses the white horizontal 

mark. The goal state will be evaluated after the end of the 15 trials.  

• More about the offers: There are 4 different offers – A, B, Ab an aB. All offers have the same 

occurrence probability of 25%. The offers differ with respect to their effect on the goal state. 

A increases the A-bar by one point. B increases the B-bar by one point. Ab increases the A-

bar by one point and subtracts one point from the B-bar. aB increases the B-bar by one point 

and subtracts 1 point from the A-bar.  

• Initial conditions: At the beginning of the block, you already have some A- and B-points. The 

amount of initial points varies from block to block.  

S2.1 Movie. Simulated goal success and total reward where the precision parameter 𝛽 varies 

between 0.25 and 3 with 𝜃, 𝛾, and 𝜅 sampled from their fitted population mean. (A) Average total 

reward across agent instances (n =1,000). An increase in 𝛽 increases total reward obtained in the 

easy and medium but decreases total reward in the hard condition. (B) Proportion of successful goal-

reaching, averaged across agent instances, for each of the three conditions. We plot the proportion 

of reaching, at the end of a miniblock, a single goal (G1), both goals (G2), or no goal (fail). An increase 

in 𝛽 increases G2 success rate in easy and medium but also increases fail rate in medium and hard. 

The three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average 

over conditions is shown in grey.  Error bars depict SD. See online material. 

S2.2 Movie. Simulated suboptimal g-choices where the precision parameter 𝛽 varies between 0.25 

and 3 with 𝜃, 𝛾, and 𝜅 sampled from their fitted population mean. (A) Proportions of suboptimal 

g1-choices (g1) and suboptimal g2-choices (g2), averaged over agent instances (n =1000). An increase 

in 𝛽 decreases suboptimal g1- and g2-choices. (B) Suboptimal g-choices as a function of trial 
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averaged over agent instances. The influence of 𝛽 and the associated decrease of suboptimal g-

choices successively increases towards the end of the miniblock. Suboptimal g-choices in the first half 

of the miniblock are largely unaffected by the 𝛽 parameter. (C) Suboptimal g2-choices as a function 

of trial averaged over agent instances. An increase in 𝛽 decreases suboptimal g2-choices late in the 

miniblock in medium and hard but not in easy.  (D) Suboptimal g1-choices as a function of trial 

averaged over agent instances. An increase in 𝛽 decreases suboptimal g1-choices late in the 

miniblock in easy and medium but not in hard.  Error bars and shaded areas depict SD. Conditions are 

colour coded. See online material. 

S2.3 Movie. Simulated goal success and total reward where the strategy preference parameter 𝜃 

varies between -1 and 1 with 𝛽, 𝛾, and 𝜅 sampled from their fitted population mean. (A) Average 

total reward across agent instances (n =1000). An increase in 𝜃 increases total reward obtained in 

easy and medium but decreases total reward in hard. (B) Proportion of successful goal-reaching, 

averaged across agent instances, for each of the three conditions. We plot the proportion of 

reaching, at the end of a miniblock, a single goal (G1), both goals (G2), or no goal (fail). An increase in 

𝜃 increases G2 success rate in easy and medium but also increases fail rate in medium and hard. The 

three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average over 

conditions is shown in grey.  Error bars depict SD. See online material. 

S2.4 Movie. Simulated suboptimal g-choices where the strategy preference parameter 𝜃 varies 

between -1 and 1 with 𝛽, 𝛾, and 𝜅 sampled from their fitted population mean. (A) Proportions of 

suboptimal g1-choices (g1) and suboptimal g2-choices (g2), averaged over agent instances (n =1000). 

An increase in 𝜃 decreases suboptimal g1- choices and increases suboptimal g2-choices. Suboptimal 

g1-choices decrease more in easy and medium than in hard. Suboptimal g2-choices decrease more in 

hard than in easy and medium. (B) Suboptimal g-choices as a function of trial averaged over agent 

instances. A change in 𝜃 affects the number of suboptimal g-choices made at the beginning but not 

at the end of the miniblock.  For  𝜃 > 0 suboptimal g-choices further decrease, because g2-choices 

are often optimal in easy and medium. (C) Suboptimal g2-choices as a function of trial averaged over 

agent instances. An increase in 𝜃 increases suboptimal g2-choices early in the miniblock, 

predominantly in the hard condition.  (D) Suboptimal g1-choices as a function of trial averaged over 

agent instances. An increase in 𝜃 decreases suboptimal g1-choices early in the miniblock, 

predominately in easy and medium.  Error bars and shaded areas depict SD. Conditions are colour 

coded. See online material. 

S2.1 Notebook. Parameter recovery simulations. See online material. 
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3 Study 2: Forward planning driven by context 

dependent conflict processing in anterior cingulate 

cortex 

3.1 Abstract 

Forward planning is often essential to achieve goals over extended time periods. However, forward 

planning is typically computationally costly for the brain and should only be employed when 

necessary. The explicit calculation of how necessary forward planning will be, is in itself 

computationally costly. We therefore assumed that the brain generates a mapping from a particular 

situation to a proxy of planning value to make fast decisions about whether to use forward planning, 

or not. Moreover, since the state space of real world decision problems can be large, we 

hypothesized that such a mapping will rely on mechanisms that generalize sets of situations based on 

shared demand for planning. We tested this hypothesis in an fMRI study using a novel complex 

sequential task. Our results indicate that participants abstracted from the set of task features to  

more generalized control contexts that govern the balancing between forward planning and a simple 

response strategy. Strikingly, we found that correlations of conflict with response time and with 

activity in the dACC were dependent on context. This context dependency might reflect that the 

cognitive control system draws on category-based cognition, harnessing regularities in control 

demand across task space to generate control contexts that help reduce the complexity of control 

allocation decisions. 

3.2 Introduction 

Many decisions have far-reaching consequences for the future, as they affect both internal bodily 

and external environmental states, in turn often conditioning potential future actions. Therefore, to 

achieve any long-term goals, people have to consider the future in some way. This can be achieved 

by planning multiple steps into the future to estimate the effects of potential action sequences (K. J. 

Miller & Venditto, 2020; D. A. Simon & Daw, 2011; Tolman, 1948). However forward planning comes 

at a cost of using time and cognitive capacities, therefore people should only plan ahead when the 

benefits outweigh the costs and rely on fast and frugal strategies otherwise (Gershman et al., 2015; 

Gigerenzer & Gaissmaier, 2011; Kool et al., 2017; Lieder & Griffiths, 2020; Shenhav et al., 2013; 

Shenhav et al., 2017).  

An intriguing question is how the brain controls when to engage in forward planning and when to use 

simpler strategies. Planning is often seen as one of the core functions of cognitive control (M. M. 

Botvinick & Cohen, 2014; Goschke, 2013; E. K. Miller & Cohen, 2001) and therefore the neural 
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mechanisms involved in the regulation of cognitive control might be similarly involved in the 

regulation of planning. A classic hypothesis proposes that the dACC plays a central role in cognitive 

control by monitoring processing conflicts that serve as a signal for the need for additional control 

(M. M. Botvinick et al., 2001). Empirical evidence supports the involvement of the dACC in conflict 

processing in response interference tasks (Kerns et al., 2004; E. H. Smith et al., 2019), value-based 

decision making (Pochon et al., 2008) and recently in tasks that require people to plan multiple steps 

into the future (Economides et al., 2015; Korn & Bach, 2018; Schwartenbeck et al., 2015).  

In multi-step tasks, however, an intricate computational problem becomes apparent. How can the 

brain control the use of forward planning in a way that maximizes long-term benefits, without having 

to compute these benefits by forward planning beforehand? One solution to this paradox might be 

for people to generate a mapping from a particular situation to a proxy of the value of planning that 

allows them to quickly access the planning values later (D. G. Lee & Daunizeau, 2021; Lieder et al., 

2018). Moreover, because the state space for real-world decision problems can be very large, it is 

unlikely that people learn a value for every possible combination of states. Rather, they might use 

certain task features to generalize clusters of states into particular contexts for which values are 

learned (Lieder et al., 2018).  

Here, we tested this principle in an fMRI study using a novel sequential decision making task. In the 

task participants had to plan ahead to earn points by accepting offers while managing a limited 

energy budget. Importantly, we designed the task such that situations with different levels of the 

demand for planning occurred. With 448 possible combinations of task features and four different 

offers participants could choose from, our task was quite complex. We therefore assumed that 

participants used a simplified representation of planning value during control allocation decisions. An 

initial analysis of choice frequencies showed that participants used a repetitive choice pattern for 

two of the options, while responses were more balanced for the two other offers. From these choice 

patterns, we hypothesized that participants generated two different groups of offer-dependent 

representations of planning value. We refer to these two groups as control contexts (or context for 

short), with one context coding for a high a priori need for planning and the other context coding for 

a low a priori need for planning. To further test the control context hypothesis, we analysed response 

times and fMRI data using a specific conflict measure as a proxy for the value of forward planning. 

We found that correlations of conflict with response time and with BOLD-activity in the dACC were 

dependent on the context. Our results provide initial evidence for a mechanism by which the brain 

harnesses regularities in the value of planning across tasks space to construct control contexts that 

facilitate efficient allocation of control in complex tasks. Future research should further develop and 
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confirm these initial findings by testing formal models of arbitration which incorporate structured 

representations of planning value. 

3.3 Methods 

3.3.1 Participants 

Forty participants took part in the experiment (22 women, mean age = 24.4, SD = 4.6). 

Reimbursement was a fixed amount of 14€ or class credit plus a performance-dependent bonus 

(mean bonus = 6.62€, SD = 0.39). The bonus was calculated as a linear function of the accumulated 

points in the experiment. The study was approved by the Institutional Review Board of the 

Technische Universität Dresden and conducted in accordance to ethical standards of the Declaration 

of Helsinki. All participants were informed about the purpose and the procedure of the study and 

gave written informed consent prior to the experiment. All participants had normal or corrected-to-

normal vision. 

3.3.2 Data availability 

Data and analysis code used in this article is publicly available at 

https://doi.org/10.5281/zenodo.5112965. The repository includes: raw behavioural data and fMRI 

statistical maps underlying Figures 3.4 and 3.5; source code for reproducing Figures 3.2, 3.3, S3.2, 

and S3.3; source code implementing the model fitting, validation and comparison procedures. 

3.3.3 Experimental task  

To investigate the context dependency of people's propensity to plan ahead, we designed a novel 

open-ended sequential decision task in which participants had to accumulate as many points as 

possible. We induced a necessity for planning by introducing a limited but replenishable energy 

resource, which was required to accept offers. Planning was further encouraged by introducing 

variation around the energy cost of accepting and by explicitly informing participants about how 

these costs would change in the future. Unlike in experiments with a fixed deadline (Economides et 

al., 2014; Ott et al., 2020; Schwartenbeck et al., 2015), the open-ended nature of the task provided 

for every trial an opportunity to plan ahead multiple steps into the future. Importantly, the task 

featured both situations in which planning was crucial to decide between the accept and reject 

option, as well as situations that could be sufficiently solved by a simple heuristic. 

In detail, the temporal structure of the task comprised three levels, the single trial, the current 

segment, and the segment pair of the current and next segment. One segment consisted of four 

trials.  In a single trial, participants could either accept or reject an offer (selected by either a left or 

right button press), where accepting the offer increased points by an indicated amount but decreases 

energy by one or two units, depending on condition, see below. Rejecting always increased energy by 
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one. There were four equally probable offers, displayed as one, two, three or four trophies in the 

middle of the screen. Accepting an offer increased points by the respective number of trophies, 

thereby advancing the yellow point bar at the top of the screen (Fig Fig 3.1, A). The energy costs of 

accepting varied between one, in low-cost segments (LC), and two in high-cost segments (HC). The 

energy budget with a minimum of zero and a maximum of six was displayed as a blue bar at the 

bottom of the screen. Initial energy in the first trial of the experiment was three. If participants had 

maximum energy and chose to reject, no further energy was added, and the next trial started. If 

participants accepted an offer with too little energy, no points were awarded, a warning was 

displayed, and the next trial started. Participants were informed about the energy cost of the current 

and the future segment by two symbols in the bottom right corner. The left symbol informed about 

both the energy cost of the current segment and the current trial number in the segment. The right 

symbol informed about the energy cost of the future segment. One flash indicated a low-cost 

segment and two flashes a high-cost segment (Fig 3.1, A). 

 

Fig 3.1. Experimental Task. (A) Timeline of a single trial. Participants could accept an offer (𝑂 =

{1,2,3,4}) displayed in the middle of the screen to collect points (top yellow bar). Accepting an offer 

was associated with an energy cost. The current energy cost within a 4-trial-segment was indicated 

by the left symbol on the bottom right of the screen. One flash indicates an energy cost of 1 and two 

flashes an energy cost of 2. The right symbol on the bottom right indicates the energy cost of the 

next segment. Participants could choose the reject option to replenish the energy budget (bottom 
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blue bar) by 1. (B) Temporal structure of the task: Four single trials formed a segment. Two 

consecutive segments formed a segment pair. (C) A segment could feature one of two different 

energy costs, low energy costs (LC) or high energy costs (HC). There were four different segment 

transitions LC/LC, LC/HC, HC/LC and HC/HC.         

The experiment included a training session outside the MRI scanner (for task instructions see S3.1 

Text) and three sessions inside. The training session comprised 144 trials across 36 segments with 

nine repetitions for each of the four possible transitions (Fig 3.1, C). The fMRI experiment comprised 

240 trials across 60 segments with 15 repetitions per segment transition. On average, participants 

took 40 minutes to complete the fMRI experiment. The fMRI experiment was split into three sessions 

between which participants rested for two to three minutes without leaving the scanner. The 

sequence of segments and offers was pseudorandomized and identical for all participants. Segment 

sequences were generated such that each of the four segment transitions (Fig 3.1, C) was sampled 

equally often. Similarly, offer sequences were generated such that the frequency of offers was 

balanced within segment transitions (raw behavioural data with all details about the offer sequences 

can be found at https://doi.org/10.5281/zenodo.5112965).  

The timing of stimulus events in the fMRI experiment was as follows (see also Fig. 3.1, A): each trial 

started with a fixation cross (0.5 seconds) in the middle of the screen to prepare participants for the 

upcoming decision. In the response phase, the offer appeared, and the choice options were 

surrounded by a frame to indicate that a decision is required. If participants did not respond within 5 

seconds, they were timed out with a warning message, and the next trial began. In the selection 

phase (1-5 seconds, uniformly sampled and rounded to first decimal), the frame surrounding the 

unchosen option disappeared. In the feedback phase (1 second, fixed), energy or point changes were 

displayed, and the frame surrounding the chosen option turned green (or accordingly red if the 

energy budget was too low for accepting). In the intertrial interval (2-5 seconds, uniformly sampled 

and rounded to first decimal) choice options were unframed and the offer disappeared (Fig 3.1, A). 

The training version of the stimulus was identical to the fMRI version except that there was no 

timeout for the response phase, there was not a selection phase and the intertrial interval was fixed 

to 1 second.  

3.3.4 Computational model of choice behaviour  

We considered three different computational-cognitive models of how participants select their 

responses. Firstly, following one standard assumption about participants’ behaviour in such 

sequential decision making tasks, participants may have used forward planning across the current 

and the next segment (‘planning strategy’) to estimate the expected value of either accepting or 

rejecting (e.g. Kolling et al., 2014; Schwartenbeck et al., 2015). Secondly, in contrast, participants may 
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have used some sort of heuristic to reduce the number of computations involved. An obvious choice 

for such a heuristic is the simple strategy to just base the accept/reject decision on the offer value 

(‘simple strategy’). For example, participants may simply always reject the lower offer values 1 and 2, 

and always accept offer values 3 and 4, provided there was enough energy left to accept the offer. 

Thirdly, we also considered a hybrid strategy of these two extremes, where participants may use a 

mixture between forward planning and simple strategy (‘hybrid strategy’). Note that our modelling 

approach relies on logistic regression and does not describe per se a process  of how the brain may 

balance between forward planning and a simple strategy. Rather, the computational approach 

enables us to test for evidence that participants rely on (i) forward planning, (ii) a simple strategy or 

(iii) a mixture between these two extremes.  

Planning strategy model (PM). Clearly, if participants used a greedy strategy of accepting all offers in 

the first few trials of the task, they will quickly run out of energy and might not be able to accept 

better offers in future trials. Therefore, to maximize the accumulated points, one has to plan ahead, 

anticipating future actions, energy costs and reward opportunities. To implement such a planning 

strategy, we assumed a finite horizon until the end of the next future segment since participants 

were only explicitly informed about the energy costs of the current and the next future segment. As 

each segment had four trials each, this resulted in a horizon of maximally 8 trials and minimally 5 

trials, i.e. when a participant has to select the decision for the fourth trial of the current segment. To 

derive a policy that maximizes expected reward over this horizon we formalised our task as a Markov 

Decision Process (MDP) (Puterman, 2014; Sutton & Barto, 2018). We define  

𝑀𝐷𝑃 = (𝑇, 𝑆, 𝐴, 𝑝𝑡(𝑠′|𝑠, 𝑎), 𝑟𝑡(𝑠, 𝑎)) (3.1) 

where 𝑇 = {1, 2, … ,8} is the set of trials and 𝑆 = 𝐸 × 𝑂 is the set of states with 𝐸 = {0,1, … ,6}  the 

set of possible energy levels and 𝑂 = {1,2,3,4} the set of offer values. 𝐴 =  {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡} is the 

set of actions. 

Since participants successfully completed a training session and received detailed task instructions 

(S3.1 Text) prior to the main experiment, we assume that participants understood the rules of the 

task. In the model, this knowledge is represented by the transition probability 

𝑝𝑡(𝑠′ = (𝑒′, 𝑜′)|𝑠 = (𝑒, 𝑜), 𝑎), which is the probability to transition to a new state 𝑠′ given the 

current state 𝑠 (consisting of the offer value 𝑜 and the current energy 𝑒) and the selected action 𝑎. 

Probabilities for allowed state transitions satisfy 

𝑝𝑡(𝑒′ = 𝑒 − 𝑐𝑐, 𝑜′|𝑒, 𝑜, 𝑎 = 𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑝(𝑜), 𝑒 > 𝑐𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≤ 4 

𝑝𝑡(𝑒′ = 0, 𝑜′|𝑒, 𝑜, 𝑎 = 𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑝(𝑜), 𝑒 < 𝑐𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≤ 4 
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𝑝𝑡(𝑒′ = 𝑒 − 𝑓𝑐, 𝑜′|𝑒, 𝑜, 𝑎 = 𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑝(𝑜), 𝑒 > 𝑓𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 4 

𝑝𝑡(𝑒′ = 0, 𝑜′|𝑒, 𝑜, 𝑎 = 𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑝(𝑜), 𝑒 < 𝑓𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 4 

𝑝𝑡(𝑒′ = 𝑒 + 1, 𝑜′|𝑒, 𝑜, 𝑎 = 𝑟𝑒𝑗𝑒𝑐𝑡) = 𝑝(𝑜), 𝑒 < 6, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 

𝑝𝑡(𝑒′ = 𝑒, 𝑜′|𝑒, 𝑜, 𝑎 = 𝑟𝑒𝑗𝑒𝑐𝑡) = 𝑝(𝑜), 𝑒 = 6, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 

 

 

 

(3.2) 

where 𝑝(𝑜) is the discrete uniform distribution over the possible offer values, 𝑐𝑐 is the energy cost in 

the current segment (1 or 2) and 𝑓𝑐 is the energy cost in the future segment (1 or 2). We model the 

different segment transitions 𝐿𝐶 → 𝐿𝐶, 𝐻𝐶 → 𝐿𝐶, 𝐿𝐶 → 𝐻𝐶 𝑎𝑛𝑑 𝐻𝐶 → 𝐻𝐶 as separate MDPs, 

substituting the respective values for 𝑐𝑐 and 𝑓𝑐. 

Immediate rewards, corresponding to the offer value, are generated upon successful acceptance. 

Formally, the reward function satisfies  

𝑟𝑡(𝑠 = (𝑒, 𝑜), 𝑎 =  𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑜, 𝑖𝑓 𝑒 ≥ 𝑐𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≤ 4 

𝑟𝑡(𝑠 = (𝑒, 𝑜), 𝑎 =  𝑎𝑐𝑐𝑒𝑝𝑡) = 0, 𝑖𝑓 𝑒 < 𝑐𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≤ 4 

𝑟𝑡(𝑠 = (𝑒, 𝑜), 𝑎 =  𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑜, 𝑖𝑓 𝑒 ≥ 𝑓𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 4 

𝑟𝑡(𝑠 = (𝑒, 𝑜), 𝑎 =  𝑎𝑐𝑐𝑒𝑝𝑡) = 0, 𝑖𝑓 𝑒 < 𝑓𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 4 

𝑟𝑡(𝑠 = (𝑒, 𝑜), 𝑎 =  𝑟𝑒𝑗𝑒𝑐𝑡) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 

 

 

 

 

(3.3) 

To determine the optimal policy that maximizes the expected reward over the current and future 

segment, the PM uses backward induction. The algorithm was implemented as follows : 

1. Set 𝑡 = 9 (if in the first trial of the segment) and define the state values after the decision in 

the final trial. To ensure that energy units left over after the eighth trial are considered to 

have utility, each remaining energy unit was multiplied by the quotient of the average offer 

value divided by the average energy costs. 

𝑉𝑡=9(𝑠) =
2.5

1.5
𝑒 = 1. 6̅ 𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡=9 ∈ 𝑆 (3.4) 

 

2. Set 𝑡 = 𝑡 − 1 and compute state-action values 

𝑄𝑡(𝑠, 𝑎) = 𝑟𝑡(𝑠, 𝑎) + ∑ 𝑝𝑡(𝑠′|𝑠, 𝑎)𝑉𝑡+1(𝑠′)

𝑠′∈𝑆

 (3.5) 

3. Update state values 

𝑉𝑡(𝑠) = argmax
𝑎

(𝑄𝑡(𝑠, 𝑎)) (3.6) 

4. If t = 1 stop. Otherwise, continue with step 2 

Action selection in the PM relies on a decision variable (DV) computed as the difference between the 

optimal state-action values 

𝐷𝑉𝑝𝑙𝑎𝑛 = 𝑄𝑡(𝑠, 𝑎 = 𝑎𝑐𝑐𝑒𝑝𝑡) − 𝑄𝑡(𝑠, 𝑎 = 𝑟𝑒𝑗𝑒𝑐𝑡) (3.7) 
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For a given state, positive values of DV indicate a greater long-term expected reward for accepting 

and negative values of DV indicate greater long-term expected reward for rejecting. 

Using a logistic regression approach, we define the probability to accept as  

𝑝(𝑎𝑐𝑐𝑒𝑝𝑡) =  
1

1 + 𝑒−𝜂
 (3.8) 

where 

𝜂 = 𝛽𝑝𝑙𝑎𝑛 𝐷𝑉𝑝𝑙𝑎𝑛 + 𝜃𝑏𝑎𝑠𝑖𝑐 𝐼𝑏𝑎𝑠𝑖𝑐 + 𝜃𝑚𝑎𝑥𝐸 𝐼𝑚𝑎𝑥𝐸 + 𝜃𝑚𝑖𝑛𝐸_𝐿𝐶 𝐼𝑚𝑖𝑛𝐸_𝐿𝐶 + 𝜃𝑚𝑖𝑛𝐸_𝐻𝐶 𝐼𝑚𝑖𝑛𝐸_𝐻𝐶  (3.9) 

The planning weight 𝛽𝑝𝑙𝑎𝑛 captures the influence of 𝐷𝑉𝑝𝑙𝑎𝑛 on choice behaviour. To allow for 

systematic deviations from behaviour prescribed by 𝐷𝑉𝑝𝑙𝑎𝑛, we also included preference parameters 

𝜃. These preference parameters simply model a participant’s tendency to generally choose the 

accept (or the reject option). The parameter 𝜃𝑏𝑎𝑠𝑖𝑐  captures the preference in trials where 

participants had enough energy to accept and did not reach the maximum energy level (termed basic 

trials). We implemented this with a binary indicator variable 𝐼𝑏𝑎𝑠𝑖𝑐  that equals one if the current trial 

was basic and zero if not. To model behaviour in trials with maximum or insufficient energy, we also 

included three bias parameters 𝜃𝑚𝑎𝑥𝐸 , 𝜃𝑚𝑖𝑛𝐸_𝐻𝐶  and 𝜃𝑚𝑖𝑛𝐸_𝐿𝐶. The first of these bias parameters 

𝜃𝑚𝑎𝑥𝐸  models the special case when participants had to choose on a trial with full energy. We expect 

this bias parameter to be generally positive because a further reject choice would not increase the 

energy further. For the other two bias parameters  𝜃𝑚𝑖𝑛𝐸_𝐻𝐶  and 𝜃𝑚𝑖𝑛𝐸_𝐿𝐶 we expect these to be 

generally negative, i.e. participants will reject an offer if they have insufficient energy. Subsets of 

these low- and max-energy trials are again selected by an appropriate binary indicator variable.  

Simple strategy model (SM). Since forward planning or other elaborate anticipatory schemes might 

incur considerable computational costs, participants may use a simple strategy, where action 

selection is only based on offer value. We define the decision variable for the SM as offer value 

centred across the four offer values 1 to 4:   

𝐷𝑉𝑠𝑖𝑚𝑝𝑙𝑒 = 𝑜 − 2.5 (3.10) 

The probability to accept is defined in the same way as for the PM 

𝑝(𝑎𝑐𝑐𝑒𝑝𝑡) =  
1

1 + 𝑒−𝜂
 (3.11) 

where 

𝜂 = 𝛽𝑠𝑖𝑚𝑝𝑙𝑒  𝐷𝑉𝑠𝑖𝑚𝑝𝑙𝑒  𝐼𝑏𝑎𝑠𝑖𝑐 + 𝜃𝑏𝑎𝑠𝑖𝑐 𝐼𝑏𝑎𝑠𝑖𝑐 + 𝜃𝑚𝑎𝑥𝐸 𝐼𝑚𝑎𝑥𝐸 + 𝜃𝑚𝑖𝑛𝐸_𝐿𝐶 𝐼𝑚𝑖𝑛𝐸_𝐿𝐶

+ 𝜃𝑚𝑖𝑛𝐸_𝐻𝐶 𝐼𝑚𝑖𝑛𝐸_𝐻𝐶  
(3.12) 
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Here, the parameter 𝛽𝑠𝑖𝑚𝑝𝑙𝑒  captures the influence of offer value on choice behaviour. 

Hybrid strategy model (HM). To cover the case that participants may choose based on both, expected 

long-term values and offer specific preferences, we use a hybrid strategy as a mixture of both 

planning and simple strategy. Such a hybrid strategy enables the decision maker to still use forward 

planning but mix this decision tendency with a simple strategy for each of the four offers. Note that 

we do not explicitly model arbitration and cannot identify which strategy dominates at any given 

time. However, the model enables us to test whether there is a mix of a simple and a planning 

strategy across trials. Like in the PM, 𝐷𝑉𝑝𝑙𝑎𝑛 is defined as the difference between the optimal state-

action values 

𝐷𝑉𝑝𝑙𝑎𝑛 = 𝑄𝑡(𝑠, 𝑎 = 𝑎𝑐𝑐𝑒𝑝𝑡) − 𝑄𝑡(𝑠, 𝑎 = 𝑟𝑒𝑗𝑒𝑐𝑡) (3.13) 

The probability to accept is defined as  

𝑝(𝑎𝑐𝑐𝑒𝑝𝑡) =  
1

1 + 𝑒−𝜂
 (3.14) 

Where now 

𝜂 = 𝛽𝑝𝑙𝑎𝑛 𝐷𝑉𝑝𝑙𝑎𝑛 + 𝜃𝑂1 𝐼𝑂1 + 𝜃𝑂2 𝐼𝑂2 + 𝜃𝑂3 𝐼𝑂3 + 𝜃𝑂4 𝐼𝑂4 + 𝜃𝑚𝑎𝑥𝐸 𝐼𝑚𝑎𝑥𝐸

+ 𝜃𝑚𝑖𝑛𝐸_𝐿𝐶 𝐼𝑚𝑖𝑛𝐸_𝐿𝐶 + 𝜃𝑚𝑖𝑛𝐸_𝐻𝐶 𝐼𝑚𝑖𝑛𝐸_𝐻𝐶  
(3.15) 

In addition to the planning weight 𝛽𝑝𝑙𝑎𝑛 and the three bias parameters for extreme energy cases, the 

HM adds, as compared to the PM, four offer-specific preference parameters (𝜃𝑂1 , 𝜃𝑂2, 𝜃𝑂3 , 𝜃𝑂4). The 

indicator variables (𝐼𝑂1 , I𝑂2 , 𝐼𝑂3 , 𝐼𝑂4) equal one if a specific offer was presented for basic trials (i.e. 

energy was neither at maximum nor too low to accept). In other words, in contrast to the PM, the 

four offer-specific bias parameters will indicate a relative dependence on the simple strategy. For 

example, a negative offer-specific parameter will indicate a participants’ preference to reject that 

specific offer. 

3.3.5 Model fitting and evaluation 

3.3.5.1 Model fitting.  

Using a hierarchical Bayesian approach, we jointly estimated both participant- and group-level 

parameters. For the PM and the SM, 𝛽 and 𝜃𝑏𝑎𝑠𝑖𝑐  were allowed to vary by participant. For the HM 

𝛽𝑝𝑙𝑎𝑛, 𝜃𝑂1, 𝜃𝑂2, 𝜃𝑂3 and 𝜃𝑂4 were allowed to vary by participant. The parameters 

𝜃𝑚𝑖𝑛𝐸_𝐿𝐶, 𝜃𝑚𝑖𝑛𝐸_𝐻𝐶 and 𝜃𝑚𝑎𝑥𝐸  were modelled as constant over participant. The participant 

parameters were drawn from a normal distribution with respective group parameters 𝜇 and 𝜎. These 

group parameters were themselves modelled as draws from a weakly informative hyperprior 

distribution: 𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(0,2) and 𝜎~𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0,2). A complete description of the models as 
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Stan code can be found online (https://doi.org/10.5281/zenodo.5112965). We fitted models using 

Hamiltonian Markov Chain Monte Carlo as implemented in Stan (Carpenter et al., 2017) via the 

PyStan interface (Stan Development Team, 2018, Version 2.19.1.1). We obtained 4,000 samples from 

four chains of length 2,000 (1,000 warmup) from the posterior distribution over model parameters. 

The potential scale reduction factor on split chains �̂� was calculated (Gelman & Rubin, 1992), 

indicating convergence for all parameters (�̂� ≈ 1).  

3.3.5.2 Model comparison.  

We compared the predictive accuracy of the PM, SM and HM using leave-one-out cross-validation 

approximated by Pareto-smoothed importance sampling (PSIS-LOO) (Vehtari et al., 2017) as 

implemented in the python package ArViz (Kumar et al., 2019, Version 0.9.0). We obtained the 

expected log pointwise predictive density (elpd) and its standard error on the deviance scale (-2* 

elpd) and refer to this quantity as leave-one-out cross-validation information criterion (LOOIC). 

Lower values of LOOIC indicate better model fit.  

3.3.5.3 Posterior predictions.  

To further assess whether the fitted models capture the observed behavioural pattern, we 

conducted posterior predictive checks using mixed predictive replication for hierarchical models 

(Gelman et al., 1996). To compute predictive replications we first sampled the group parameters (𝜇 

and 𝜎) from the posterior and then sampled forty normally distributed participant-level parameters 

from these group parameters. Replicated accept-reject responses were generated for replicated 

participants and all trials by sampling from a Bernoulli distribution 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑟𝑒𝑝 ~𝐵(𝑝), where 𝑝  is 

the response probability as defined in equations 3.8 and 3.9 (PM) or 3.12 (SM) or 3.15 (HM). The 

resulting array of replicated responses is of size 𝑀 =  𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑛𝑡𝑠 × 𝑛𝑡𝑟𝑖𝑎𝑙𝑠. Individual 

dots in Fig 3.2 A indicate choice proportions for 40 replicated participants averaged over 100 

posterior samples. Bars represent averages over replicated participants and 100 samples, with error 

bars indicating between participant standard deviation. For the additional informal model validation 

in Fig 3.2 C, we computed the proportion of replicated responses that matched the participant 

responses. Note that the set of stimulus configurations (energy, current segment type, future 

segment type, trial within segment) that participants visited during the task was identical to the 

stimulus configurations for which replicated responses were sampled under the three models (PM, 

SM, HM). A match was counted (match = 1, mismatch = 0) if the model's response (accept or reject) 

was identical to a participant's choice in a given trial. 

3.3.5.4 Parameter recovery.  

To ensure that our model parameters are identifiable, we performed a parameter recovery analysis 

with the most complex model HM. We first generated simulated data using posterior means of the 
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participant level parameters 𝛽𝑝𝑙𝑎𝑛, 𝜃𝑂1, 𝜃𝑂2, 𝜃𝑂3 and 𝜃𝑂4 and group level parameters 

𝜃𝑚𝑖𝑛𝐸_𝐿𝐶, 𝜃𝑚𝑖𝑛𝐸_𝐻𝐶 and 𝜃𝑚𝑎𝑥𝐸 . Next, we refitted the model to the simulated data and compared the 

estimated parameters to the known data-generating parameters. We considered a known parameter 

recovered if its value was within the 95% posterior credibility interval (CI) of the re-estimated 

parameter. Results showed that both, participant level parameters (>99%) and all group level 

parameters, including those for 𝛽𝑝𝑙𝑎𝑛, 𝜃𝑂1, 𝜃𝑂2, 𝜃𝑂3 and 𝜃𝑂4 could be reliably recovered from the 

simulated data (for details see Jupyter Notebook at https://doi.org/10.5281/zenodo.5112965).  

3.3.6 Conflict and response time analysis  

A key quantity for our analysis of response times (RT) and fMRI data was conflict. 

𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 =  −|𝑄𝑡(𝑠, 𝑎 = 𝑎𝑐𝑐𝑒𝑝𝑡) − 𝑄𝑡(𝑠, 𝑎 = 𝑟𝑒𝑗𝑒𝑐𝑡)| =  −|𝐷𝑉𝑝𝑙𝑎𝑛| (3.16) 

This corresponds to the similarity between long-term values for accepting and rejecting (see 

equation 3.7). If, for a given trial and task state, the action-value difference is small, conflict is large. 

Conversely, if the action-value difference is large, conflict is small. We consider conflict as a signal of 

choice difficulty, reflecting the need for elaborate information processing such as planning. We 

assume that participants do not calculate the conflict directly (which would require planning by 

itself), but that they have quick and frugal access to a proxy for the conflict (D. G. Lee & Daunizeau, 

2021). 

We analysed response times using hierarchical Bayesian linear regression estimating group- and 

participant-level parameters simultaneously. We modelled log RT as the linear function  

log 𝑅𝑇 =  𝛽0 + 𝛽𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐶 + 𝛽𝑡𝑦𝑝𝑒 𝐼 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐶𝐼 (3.17) 

where 𝐶 is conflict (Eq. 3.16), 𝐼  is a binary indicator variable that equals one if the current offer was 

2 or 3 (which we call in the following intermediate) and zero if the current offer is 1 or 4 (which we 

call in the following extreme). This classification into intermediate and extreme offers was based on 

participants' choice behaviour (Fig 3.2, A). CI models the interaction between offer type and conflict. 

The participant-level intercept 𝛽0 and parameters 𝛽𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 , 𝛽𝑡𝑦𝑝𝑒  and 𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 were normally 

distributed with group parameters 𝜇 and 𝜎. We gave these group parameters a weakly informative 

hyperprior: 𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(0,10) and 𝜎~𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0,10). Models were fit in Stan via PyStan using 

Hamiltonian Markov Chain Monte Carlo. We obtained 2,000 posterior samples from four chains of 

length 1,000 (500 warmup). The potential scale reduction factor on split chains �̂� was calculated, 

indicating convergence for all parameters (�̂� ≈ 1). We generated linear predictions of log RT using 

2,000 posterior samples of the group hyper parameters (𝜇0, 𝜇𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝜇𝑡𝑦𝑝𝑒,  𝜇𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) and 
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exponentiated back to the original RT scale for better interpretability. The regression lines in Fig 3.3 C 

correspond to the median across samples and shaded areas to the 95% interval. All trials that were 

not timed out (RT > 5s) were included in the analysis.   

3.3.7 fMRI acquisition and preprocessing   

fMRI data were acquired on a 3 T MRI scanner (Siemens Magnetom Trio Tim, Siemens Medical 

Solutions, Erlangen, Germany) using a 32 channel head coil. On average, per participant, 942 volumes 

were acquired across three sessions, using a T2*-weighted echo-planar sequence (TR=2360 ms, 

TE=25 ms, flip angle=80°, FoV=192 mm). For each image, 48 axial slices of 2.5 mm were sampled in 

descending order. Field maps were acquired after each functional session (TR=532 ms, short TE=5.32 

ms, long TE=7.78 ms). Structural data were acquired using a T1‐weighted MPRAGE sequence (TR = 

2400 ms, TE=2.19 ms, flip angle=8°, FoV=272 mm). 

fMRI data were preprocessed and analysed using Statistical Parametric Mapping (SPM12) (Wellcome 

Trust Centre for Neuroimaging, London, UK). Functional images were unwarped using individual field 

maps generated by SPM’s field map toolbox (Hutton et al., 2002), slice time corrected, realigned to 

the first image of the session, spatially normalized to the MNI template using the unified 

segmentation approach (Ashburner & Friston, 2005) and smoothed with an 8mm full-width at half-

max (FWHM) Gaussian kernel. 

3.3.8 fMRI Analysis  

For each participant we specified and estimated a general linear model (GLM). Motivated by our 

behavioural results, we included one event regressor with response phase (see Fig 3.1, A) onsets for 

intermediate (2 and 3) offers and one event regressor with response phase onsets for extreme (1 and 

4) offers. For each of these two event regressors, we included a parametrically modulated regressor 

with trial-wise conflict values. According to SPM’s default orthogonalisation setting, conflict values 

were mean-centred per condition. Additional regressors of no interest were included: an event 

regressor with response phase onsets for extreme energy trials (either maximum or insufficient 

energy) and an event regressor with response phase onsets of accept choices (to control for the 

effect of action). Onsets were modelled as stick function with duration 0. Regressors were convolved 

with the canonical HRF. We also included the 6 movement parameter vectors as nuisance regressors. 

Images of all three sessions were analysed together and a constant for each session was included in 

the design matrix. For each participant the following first level contrasts were computed: 

intermediate > extreme, extreme > intermediate, conflict_intermediate > conflict_extreme and a 

parametric effect of conflict averaged across intermediate and extreme trials. Finally, we performed 

one-sample t-tests on the contrast images of all participants to assess statistical significance on the 
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group-level. Statistical parametric maps were initially thresholded with p = 0.001 (see Tables S3.2-

3.5). Voxels with a family-wise-error corrected p-value < 0.05 were considered significant. 

dACC and dorsolateral prefrontal cortex (dlPFC) are commonly associated with conflict processing (E. 

K. Miller & Cohen, 2001). Therefore, we defined a priori regions of interest (ROI), which we used for 

small volume correction (SVC). ROIs were defined using the WFU-Pickatlas software (Maldjian et al., 

2003) with a dilation factor of 1. The ROI for the dACC encompassed dorsal Brodmann area (BA) 32, 

clipped at z = 18 in MNI-space (S3.1 Fig). The ROI for the dlPFC encompassed BA46 and BA9. 

Generated masks are available at https://doi.org/10.5281/zenodo.5112965.  

3.4 Results 

3.4.1 Behavioural results 

3.4.1.1 Choice behaviour.  

We first identified situations in the task that could be classified as generally difficult or easy based on 

participants' choice frequencies. An often repeated choice pattern indicates that a specific situation 

can be handled by simple response mechanisms, while a mixed response pattern of accept and reject 

indicates that more elaborate information processing may be required. Analysis of choice 

frequencies revealed an obvious pattern, showing that participants accepted offer 1 in only a few 

trials (mean = 1%, SD = 2%) and conversely accepted offer 4 in the majority of trials (mean = 98%, SD 

= 3%) (Fig 3.2, A). For offers 2 (mean = 14 %, SD = 12 %) and 3 (mean = 77 %, SD = 13 %), the choice 

behaviour was more balanced between accepting and rejecting. To further quantify the balance 

between accepting and rejecting, we computed the distance between choice frequencies and the 

50% chance level and compared these distances across offer values. Distances from chance level 

were larger for offer 1 and 4 compared to offer 2 and 3 (pairwise Wilcoxon signed-rank tests, p < 

0.001). There was no significant difference between offer 1 and offer 4 (Wilcoxon signed-rank test, p 

= 0.094). We also found that the distance from chance level was greater for offer 2 than for offer 3 

(Wilcoxon signed-rank test, p < 0.001).  
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Fig 3.2. Choice behaviour and modelling results. (A) Plot of accept choices across offer values for 

participants and posterior predictions for the Planning strategy model (PM), simple strategy model 

(SM) and hybrid strategy model (HM). Bars represent the mean acceptance frequency across 

participants or across simulated participants. Trials in which energy was at max or too low to accept 

were excluded. Error bars represent standard deviation (SD). Dots represent individual participant 

data. The dotted line represents 50% chance level. (B) Model comparison of the PM, SM and HM. 

Error bars represent standard errors (SE) of the LOOIC. The asterisk indicates the winning model. (C) 

Proportion of simulated accept-reject choices that matched participant choices for the three models 

PM, SM and HM. Bars indicate averages over 200 posterior samples. The bar order and pattern is the 

same as in (A). Error bars represent SD. (D) Estimated parameters of the winning hybrid strategy 

model. Large black dots represent posterior means of group parameters with error bars depicting 

95% credibility intervals. Grey curves represent kernel density estimates for the posterior 

distributions of group parameters. Semi-transparent small dots represent posterior means of 

participant-level parameter estimates.  

From this pattern, we hypothesised that participants might have treated the choice given an extreme 

offer 1 or 4 as generally easy and the choice given an intermediate offer 2 or 3 as generally hard. We 

hypothesized that this categorisation into what we call control contexts predetermines the actual 
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planning investment in a given trial. In the following we will test this hypothesis and provide further 

insights using model-based analysis of choice behaviour, analysis of response times and analysis of 

fMRI BOLD-signals. 

In addition to the offer value, we found, using logistic regression, that participants’ choice behaviour 

was also influenced by other task features (S3.1 Table). Participants chose more often the accept 

option if they had more energy units and likewise if the current energy cost of accepting was low 

(current segment = LC). Participants chose more often the accept option if the upcoming energy cost 

was high (future segment = HC), showing that participants considered information about the future 

segment when making a decision.  

3.4.1.2 A combination of forward planning and simple offer specific preferences fitted behaviour 

best.  

We assumed that our task design motivated participants to use simple heuristics and forward 

planning in a situation-appropriate way. To test for the simultaneous presence of planning and 

simple heuristics we carried out a model-based analysis of choice behaviour. Three different 

strategies of how participants select their responses were considered. First, participants may have 

fully relied on forward planning across the current and the next segment to select actions that 

maximize the expected value (PM). Second, participants may have used a simple strategy just 

dependent on the offer value (SM). To illustrate the difference between these two strategies, let us 

consider a (for convenience deterministic) agent in the first trial of a segment, with three energy 

units, where the current and the future energy cost is 2 (segment pair HC/HC) and offer 3 is 

presented. A planning agent would reject the offer and replenish its energy reserves in order to be 

able to accept potential better offers in the future. In contrast, an agent following a simple strategy, 

e.g. who always accepts offers 3 and 4 and rejects offer 1 and 2, would accept the offer 3. We also 

considered a third alternative that participants use a mixture between planning and a simple strategy 

(HM) to achieve a good trade-off between the benefits and costs of the respective strategies 

depending on the current task situation. 

We compared how well the three cognitive computational models fitted participants’ behaviour 

using leave-one-out cross validation. We found, as shown in Fig 3.2 B, that the HM explained 

participant behaviour substantially better (LOOIC = 3622.5, SE = 108) than the PM (LOOIC = 5006.0, 

SE = 117.5) and the SM (LOOIC = 4613.2, SE = 109.4). This demonstrates that participants use both 

planning and simple heuristics throughout the task. To confirm this result, we also compared models 

on the participant level and found that the HM explained behaviour best for 33  (of N = 40) 

participants (S3.2 Fig). For 3 participants the SM and for 4 participants the PM explained behaviour 

best.  
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We also simulated posterior predictions for the three models and plotted acceptance frequencies 

across offer values (Fig 3.2, A).  Both, the HM and the SM, closely captured the behavioural pattern of 

participants, but acceptance frequencies of the PM were lower for offer 1 and 2 and higher for offer 

2 and 3. These simulations are consistent with participants mixing forward planning with a simple 

reject-preference for offers 1 and 2 and an accept-preference for offers 3 and 4. As a further informal 

illustration of why the HM was superior to the SM, we computed the proportion of matches between 

participant choices and the simulated choices from the fitted models (Fig 3.2, C). While SM shows 

high matching rates for offers 1, 2 and 4, the matching rate for offer 3 is decisively lower compared 

to the HM. Conversely, the PM has considerable lower matching rates than the HM for offers 1,2,4 

but achieves a relatively high matching rate for offer 3.  These results show that the SM particularly 

fails to account for participants choices for offer 3, presumably because participants engage in an 

increased amount of planning for offer 3 (see Fig 3.2A, where the mean accept rate for offer 3 is 

closest to the 50% line among all four offers, i.e. offer 3 does not support a simple action selection 

strategy).     

Parameter estimates of the HM demonstrate both evidence for forward planning and usage of a 

simple strategy as quantified by four offer-specific preferences (Fig 3.2, D). We found a positive 

weight on the planned value difference (mean group parameter 𝛽𝑝𝑙𝑎𝑛  = 1.79, 95% CI = [1.45, 2.15]). 

This indicates that participants, when making a decision, accounted for its future consequences. We 

also found preference parameters different from zero for all four offers. For offer one (mean group 

parameter 𝜃𝑂1  = -3.39, 95% CI = [-4.76, -2.37]) and offer two (mean group parameter 𝜃𝑂2  = -0.96, 

95% CI = [-1.47, -0.47]), participants showed a preference for rejecting (indicated by negative 

parameter values). For offer three (mean group parameter 𝜃𝑂3  = 1.77, 95% CI = [1.43, 2.11]) and 

offer four (mean group parameter 𝜃𝑂4  = 3.56, 95% CI = [2.97, 4.28]), participants showed a 

preference for accepting (indicated by positive parameter values). We explicitly modelled special 

cases, where participants had either maximum energy (𝜃𝑚𝑎𝑥𝐸) or not enough energy to accept 

(𝜃𝑚𝑖𝑛𝐸_𝐿𝐶 and 𝜃𝑚𝑖𝑛𝐸_𝐻𝐶), see also Methods. As expected, participants showed a bias to accept in 

maximum energy trials and a bias to reject in low energy trials (see Fig 3.2, D).  

We further found evidence that participants who account for the long-term consequences of their 

actions by e.g. planning, earn more points. Post-hoc correlation analysis revealed that participants 

with a larger fitted planning parameter 𝛽𝑝𝑙𝑎𝑛 of the winning hybrid model accumulated more points 

throughout the experiment (r = 0.521, p = 0.001, Fig 3.3, A) and had slower average response times (r 

= 0.374, p = 0.017, Fig 3.3, B). 
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Fig 3.3. Correlation of fitted planning weight with behavioural markers and response time analysis. 

(A) Participant level posterior mean planning weight of the winning hybrid model versus 

accumulated points (B) Participant level posterior mean planning weight of the winning hybrid model 

versus mean response times. (C) Linear regression of log response times against choice conflict. 

Larger choice conflict was associated with an increase in response time, where the increase was 

significantly more pronounced during intermediate offers 2 and 3 compared to the extreme offers 1 

and 4. Regression lines were computed from mean group hyperparameters. Shaded areas depict 95% 

credibility areas computed from 2,000 posterior samples of the group hyperparameters.  

3.4.1.3 Greater conflict-driven increase of response times in intermediate than extreme trials. 

Previous research suggested that the brain regulates the use of cognitive control based on the 

estimated value of control (Shenhav et al., 2013). Analogously, we assume that the brain uses similar 

value estimates when deciding about the degree of forward planning during sequential decision 

making. Most importantly we hypothesized that, due to cost incurred by the computation of control 

values themselves, the brain uses a context-specific prior assumption about the general need for 

planning to minimize the "metacosts" of control decisions. To further test this hypothesis we 

analysed the relationship between response times as an indicator for the degree of planning and 

planning value (operationalised by a specific conflict measure, see methods). We expected that not 

only would larger conflicts generally lead to increased response times, but critically that this increase 

will be more pronounced for the intermediate offers 2 and 3, possibly reflecting context-specific 

planning activity driven by a context-specific evaluation of conflict. 

Bayesian linear regression indeed showed that conflict was significantly more predictive for log RT for 

the intermediate offers 2 and 3 compared to the extreme offers 1 and 4 (group parameter 

𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.04, 95% CI = [0.02 0.07]). We also found a significant positive main effect of conflict 

(group parameter 𝛽𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡  = 0.08, 95% CI = [0.05 0.11]) and offer type (group parameter 

𝛽𝑖𝑠_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  = 0.18, 95% CI = [0.14 0.23]) on log RT. Fig 3.3 C shows fitted regression lines on the 

untransformed RT scale. This shows that, the increase in computation time associated with conflict 

level is greater for intermediate offers than extreme offers.  
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3.4.2 FMRI results  

3.4.2.1 A frontal network is more activated in intermediate than extreme trials. 

A set of parietal and frontal regions, sometimes called the multiple demand network, are often 

activated during cognitively challenging tasks (Duncan, 2010; E. K. Miller & Cohen, 2001). To relate to 

these well-established findings, we first tested to confirm where brain activity was higher during 

intermediate compared to extreme offers (Intermediate > Extreme) expecting to see greater activity 

in frontal areas related to planning and cognitive control. We indeed found significantly greater 

activity in dACC and right dlPFC (Fig 3.4, A; Table 3.1 and S3.2 Table).  

 

Fig 3.4. Different activation of dACC for intermediate versus extreme offers. (A) dACC and right 

dlPFC were significantly more activated during intermediate compared to extreme offers. (B) 

Bilateral PPC was significantly more activated during extreme compared to intermediate offers. 

Activations displayed at p < 0.001 uncorrected. See Table 3.1 for peak MNI-coordinates and statistics, 

significant at p<0.05 FWE corrected. 

Table 3.1.  Summary of fMRI Results 

   t FWE p value   MNI coordinates  

Region  whole brain SVC  x y z 

Intermediate > Extreme       

dACC 7.26 < 0.001 < 0.001  -4 16 52 
dlPFC R 5.12 0.180 0.018  52 34 24 
Occipital L 6.98 < 0.001   -18 -92 -10 
Occipital R 6.38 0.007   20 -84 -8 

Extreme > Intermediate       

PPC (BA 40) L 6.68 0.003   -60 -44 38 
PPC (BA 40) R 5.49 0.072   64 -32 28 

Conflict        

dACC 4.82 0.290 0.007  10 24 44 
anterior Insula L 5.62 0.041   -30 24 -2 
anterior Insula R 6.50 0.004   38 20 0 

Conflict: Intermediate > Extreme       

dACC 4.32 0.744 0.030  8 2 40 
posterior MTG R 5.69 0.040   56 -64 6 

Regions significant (p < 0.05 FWE corrected) at the whole brain level or small volume correction (SVC) 

based on a priori regions of interest. Only clusters with more than 10 voxels were reported. BA, 
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Brodmann area; L, left; R, right; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal 

cortex; Occipital, occipital lobe; VS, ventral Striatum; PPC, posterior parietal cortex; MTG, middle 

temporal gyrus. 

We also tested where brain activity was greater during extreme versus intermediate trials (Extreme > 

Immediate) and found increased activity in bilateral posterior parietal cortex, where the cluster in 

the left hemisphere was significant at the whole brain corrected level (PPC; Fig 3.4, B; Table 3.1 and 

S3.3 Table). Besides its role in sensory attenuation, posterior parietal cortex is also involved in 

sensorimotor transformations during decision making (Andersen & Cui, 2009). This suggests that 

participant decisions for extreme offers might be related to low-level sensorimotor processes, 

coupling simple stimulus cues to actions. A network including left ventral Striatum (VS), posterior 

cingulate cortex (PCC) and bilateral Amygdala emerged at a lower threshold (see S3.3 Table). These 

regions have been shown to encode value information during reward-based choice (Bartra et al., 

2013). Higher activation in these areas during extreme trials might indicate an increased salience of 

offer value information instigating a simple response strategy based on offer-specific preferences. 

However, this idea requires further research. 

3.4.2.2 Context-dependent conflict processing in dACC. 

 As a confirmatory analysis of previous findings implicating the dACC in the monitoring of various 

signals to evaluate the need for additional control (e.g. conflict, Shenhav et al., 2013), we also tested 

for the effect of conflict averaged across conditions. In accord with this previous research, we found 

a significant positive correlation with BOLD-activity in the dACC (Fig 3.5, A; Table 3.1 and S3.4 Table). 

We also found a significant positive effect of conflict in bilateral anterior Insula (Fig 3.5, A; Table 3.1 

and S3.4 Table). 

 

Fig 3.5. Effects of conflict. (A) BOLD-activity in dACC and bilateral anterior Insula (AI) correlated with 

conflict. (B) The correlation of BOLD-activity in dACC with conflict was significantly increased during 

intermediate versus extreme offers. Activations displayed at p < 0.001 uncorrected. See Table 3.1 for 

peak MNI-coordinates and statistics, significant at p<0.05 FWE corrected. 
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Next, we tested our main hypothesis that the extreme and intermediate conditions are treated as 

different control contexts by the brain. Note that one obvious reason for the effects in the 

categorical contrast Intermediate > Extreme could be that average conflict was higher in 

intermediate trials than in extreme trials (S3.3 Fig). Another possibility would be that the brain areas 

involved in processing conflict are modulated by the context. In other words, is conflict processed 

differently in the brain when the subject is in an intermediate compared to an extreme trial? 

Behavioural results in Fig 3.3 C already indicate such a context-dependent mechanism, showing that 

reaction times increased more with conflict during intermediate than extreme trials.  

To test this context dependency using brain activity we included conflict as parametric modulator in 

our GLM, separately for intermediate and extreme offers. We then computed a contrast between the 

parametric modulator of conflict for intermediate offers minus the parametric modulator of conflict 

for extreme offers (Conflict Intermediate > Conflict Extreme). Our expectation was that the dACC 

would track conflicts (as a proxy for the value of planning), but to a lesser extent in a context with a 

low prior need for planning (i.e. in the extreme context), due to the metacosts associated with 

obtaining conflict values. We indeed found that BOLD-activity in dACC and right posterior middle 

temporal gyrus (pMTG) was more strongly correlated with conflict during intermediate offers 

compared to extreme offers (Fig 3.5, B; Table 3.1 and S3.5 Table). An effect in dlPFC emerged at a 

lower threshold (see S3.5 Table). This finding aligns well with the results of the reaction time analysis 

and is consistent with the idea that the situation-appropriate investment into planning is driven by a 

context-dependent evaluation of conflict involving the dACC.   

3.5 Discussion 

We used a novel sequential task with a complex task space to investigate how people decide when to 

plan ahead. We found evidence that participants use readily available features of the task space, 

such as offer values, to construct contexts that condition the balancing between forward planning 

and a simpler response strategy. We further provided evidence that the context dependency of 

planning might be mediated by context-dependent conflict processing involving dACC. Our study 

provides initial evidence that the human ability to efficiently allocate cognitive control in complex 

tasks is supported by category-based cognition that harnesses regularities in control demand to 

generate control contexts. 

Normatively, a decision about the engagement into elaborate planning should find the optimal trade-

off between the benefits and costs of such planning in a given situation (Shenhav et al., 2013). It is 

however unlikely that people calculate the expected value of planning explicitly because this would 

require planning itself. Previous studies have therefore argued that people must have quick and 
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automatic access to a proxy of the value of planning (D. G. Lee & Daunizeau, 2021; Lieder et al., 

2018). It is a largely unresolved question how humans learn such proxies to decide about their 

engagement into effortful planning. A hallmark of learning is that people generalize individual 

sensorimotor experiences into broader categories allowing them to react adequately to novel 

instances of a learned category (Konidaris, 2019; E. E. Smith & Medin, 1981; Tenenbaum et al., 2011; 

Yee, 2019). Recent research suggests that the brain leverages similar generalisation mechanisms 

when deciding about the allocation of cognitive control or when computing meta-control (Bhandari 

et al., 2017; M. Botvinick et al., 2020; Lieder et al., 2018; Marković et al., 2020; Schwöbel et al., 

2021). Here, we tested this principle using a complex planning task, where the demand for planning 

changed depending on the current situation as defined by a configuration of task features including 

offer value, energy, current energy cost, future energy cost and trial within a segment. 

Our results suggest that participants used a generalized task representation, mapping clusters of 

states (contexts) to an approximated value of planning (e.g. conflict) to decide efficiently about the 

investment in planning. In particular, our results suggest that participants constructed two contexts, 

one for the extreme offers 1 and 4, associated with a low prior tendency for planning, and one for 

the intermediate offers 2 and 3 associated with a high prior tendency for planning. Three pieces of 

converging evidence supported this conclusion: First, responses in an intermediate context were 

more mixed between accepting and rejecting compared to an extreme context. Second, our model-

based analysis suggested that the mixed response profile for the intermediate offers can be 

explained by participants planning ahead multiple steps into the future (especially offer 3 ; see Fig 

3.2; C). Third, the findings that the correlation of conflict with response times and dACC activity 

depended on the current context further corroborated that participants had learned an offer-specific 

context structure. 

To investigate the usage of forward planning or simple heuristics and its determining factors, we 

designed a task where both types of decision making can occur. Our computational analysis indeed 

revealed that a model including both, planning and simple offer-specific preferences, fitted 

behaviour substantially better, than a model that relied on planning or a simple strategy alone. Our 

model implemented planning as a search through a decision tree, calculating expected long-term 

state-action values. However, due to the high computational cost of such an exhaustive search, it is 

unlikely that participants planned in exactly this way. We therefore assumed that participants used 

some sort of approximate planning, reducing planning complexity while still accommodating for an 

action’s future consequences. Pruning of decision trees (Huys et al., 2012), adjusting the planning 

depth (Keramati et al., 2016) or the division of a decision problem into smaller subproblems (Huys et 

al., 2015) are just some ways of how people can adjust planning complexity. While we cannot say 
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anything about the exact implementation of planning, we found that the fitted individual planning 

weights of the winning hybrid model correlated with RT, suggesting that participants engaged in 

some kind of forward planning. Another limitation of the hybrid model is that it does not explicitly 

model arbitration between different decision modes, but only recognises the presence of a mixture. 

While research on model-free and model-based reinforcement learning systems provided important 

insights into the neurocomputational mechanism of arbitration using a simple (two-step) planning 

task (Kool et al., 2017; S. W. Lee et al., 2014), less is known about how the brain adapts its decision 

mode during more complex tasks. Our study provides evidence for a link between the generalisation 

of task representations and high-level control decisions and may therefore inform future attempts to 

model arbitration mechanisms in more complex realistic environments. 

Our finding that BOLD activity in the dACC correlated with conflict is consistent with the view that the 

dACC monitors the need for effortful controlled processing (M. M. Botvinick et al., 2001; Shenhav et 

al., 2013; Shenhav et al., 2017). In our task, when it was not clear at the beginning of a trial whether 

accepting or rejecting is the best option (i.e. if the conflict was high), participants needed to generate 

additional information by planning ahead which could then help to adjudicate between the two 

options. While dACC might have played a central role in detecting the need for additional planning, a 

distributed network including dlPFC and other structures might have been involved in the additional 

information sampling. The finding that dlPFC was more active in the demanding intermediate context 

is consistent with the view that dlPFC is central to planning (Fuster, 2015). In order for planning 

processes to have an impact on the decision, it is often necessary to inhibit a prepotent response 

first. We found evidence that such prepotent responses played a role in in our task as well, as our 

model-based analysis revealed non-negative choice preference parameters for all offers. Previous 

research suggests that such prepotent responses could have been inhibited by a hyper-direct 

pathway from the ACC to the basal ganglia, effectively increasing time until movement generation 

and thus allowing planning structures to influence decision making (Cavanagh et al., 2011; Gluth et 

al., 2012; Wiecki & Frank, 2013; Wiecki et al., 2013). 

The anterior insula (AI) is often coactivated with the ACC in classical cognitive control tasks (Duncan 

& Owen, 2000) and sequential tasks alike (e.g. Schwartenbeck et al., 2015). Previous research 

suggests that, besides of its role in interoception and general awareness (Craig & Craig, 2009), the AI 

appears to be specifically involved in the representation and learning of uncertainty (Bossaerts, 2010; 

Loued-Khenissi et al., 2020; Singer et al., 2009). Translated to our task, the AI could have relayed 

information about uncertainty (or conflict) to the dACC, which then initiates adaptive behavioural 

change in the form of planning.   
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We found that the correlation of activity in the dACC with conflict (which we take to be a proxy for 

the value to plan ahead) depended on context. One possible explanation for this pattern could be 

that the dACC has access to a hierarchical representation of learned conflicts, whereby conflicts 

encoded at a finer level of task space are subsumed under conflicts encoded at the level of context. 

In other words, states of similar difficulty could be grouped into a more general category that e.g. 

simply indicates whether the decision is easy or difficult. In contexts with a high prior expectation of 

conflict, i.e. in an intermediate context, the dACC could access conflict at a more fine-grained level to 

enable the appropriate level of planning. Conversely, in a context with low prior expectation of 

conflict, i.e. in an extreme context, the dACC would not access information beyond that at the coarse 

context level, as the overall need for planning was low anyway. Speculating on the algorithmic 

implementation of such a process, the context-dependent prior assumption about conflict could set 

the threshold for the meta-decision problem of inferring the need of planning. In an intermediate 

context, a high meta-threshold would grant enough time for a state-level readout of conflict, 

whereas in an extreme context the need for planning would have been determined before state-level 

conflicts were accessed. We also found evidence that right posterior middle temporal gyrus (pMTG) 

is more correlated with conflict in an intermediate than in an extreme context. Previous research 

implicated the pMTG in category-based cognition (Martin, 2007). It is therefore an intriguing 

possibility that the pMTG is also capable of forming abstract categories of choice difficulty that 

support the context-dependent evaluation of planning demands. Although we can only speculate 

about the role of pMTG, the question how brain mechanism for structured knowledge acquisition 

and cognitive control interact is an important direction for future research. Overall, our findings are 

generally consistent with the view that people exploit the structure of a task for efficient storage and 

access of the value of control (Lieder et al., 2018). 

3.6 Supporting information 

S3.1 Table. Logistic regression of choice (accept = 1, reject = 0) against task features. 

 Estimate SE z-value P(>|z|)  

Intercept -12.53 0.33 -37.58 < 10-20 *** 

Offer value 3.65 0.09 40.80 < 10-20 *** 

Energy 0.63 0.04 15.30 < 10-20 *** 

Current  segment (LC=1 , HC=0) 2.38 0.11 22.55 < 10-20 *** 

Future segment (LC=1, HC=0) -0.24 0.09 -2.75 0.00593 ** 

Trial -0.02 0.04 -0.57 0.56753  

Trials were pooled across participants (N = 40). Trials in which energy was at maximum or too low to 

accept any offer were excluded. 
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S3.2 Table.  fMRI results for the contrast: intermediate > extreme   

  cluster size t FWE p value   MNI coordinates 

Region (voxels)  whole brain SVC  x y z 

Dorsal anterior cingulate 929 7.26 <0.001 <0.001  -4 16 52 
Occipital L 1252 6.98 <0.001   -18 -92 -10 
Occipital R 1475 6.38 0.007   20 -84 -8 
Dorsolateral prefrontal R 106 5.12 0.180 0.018  52 34 24 
Superior parietal L 76 4.68 0.456   -28 -64 52 
Putamen R 95 4.64 0.486   20 16 -4 
Angular R 112 4.54 0.580   34 -70 44 
Occipital L 92 4.51 0.602   -24 -84 14 
Anterior Insula  L 45 4.09 0.918   -26 18 0 
Dorsolateral prefrontal L 30 4.06 0.935 0.223  -48 32 24 
Precentral L 21 3.98 0.961   -36 -12 50 
Inferior parietal R  50 3.97 0.964   36 -48 38 
Superior frontal L 11 3.71 0.997   -24 40 -14 
Precuneus R 128 3.69 0.998   6 -62 34 

The table contains all clusters with more than 10 voxels that survived uncorrected statistical 

thresholding with p < 0.001.  

S3.3 Table.  fMRI results for the contrast: extreme > intermediate   

  cluster size t FWE p value   MNI coordinates 

Region (voxels)  whole brain SVC  x y z 

Posterior parietal L 483 6.68 0.003   -60 -44 38 
Posterior parietal R 439 5.49 0.072   64 -32 28 
Posterior cingulate 106 5.15 0.169   6 -6 36 
Amygdala L 186 4.92 0.280   -24 -2 -18 
Middle temporal  L 391 4.90 0.296   -48 -64 6 
Middle temporal R 237 4.86 0.323   48 -12 -12 
Amygdala R 94 4.56 0.560   28 -2 -18 
Ventral striatum 23 4.40 0.701   -4 22 -10 
Middle temporal R 109 4.20 0.858   66 -48 10 
Anterior cingulate 16 4.09 0.920   -4 32 4 
Anterior Insula R 20 3.87 0.984   30 20 -16 
Superior frontal R  17 3.71 0.997   10 48 26 

The table contains all clusters with more than 10 voxels that survived uncorrected statistical 

thresholding with p < 0.001.  

S3.4 Table.  fMRI results for parametric effect of conflict   

  cluster size t FWE p value   MNI coordinates 

Region (voxels)  whole brain SVC  x y z 

Anterior Insula R 523 6.50 0.004   38 20 0 
Anterior Insula L 600 5.62 0.041   -30 24 -2 
Dorsal anterior cingulate 644 4.82 0.290 0.007  10 24 44 
Thalamus R 40 4.29 0.718   8 -18 -12 
Pallidum L 29 4.01 0.909   -12 0 -4 
Supplementary Motor Area R 24 3.78 0.983   12 8 62 

The table contains all clusters with more than 10 voxels that survived uncorrected statistical 

thresholding with p < 0.001.  
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S3.5 Table.  fMRI results for the contrast: conflict intermediate > conflict extreme   

  cluster size t FWE p value   MNI coordinates 

Region (voxels)  whole brain SVC  x y z 

Middle temporal R 489 5.69 0.040   56 -64 6 
Anterior Insula R 389 5.05 0.196   36 -8 18 
posterior cingulate L 29 4.79 0.345   -16 -32 40 
Occipital L 441 4.75 0.378   -48 -74 24 
Precuneus R 117 4.54 0.551   10 -50 10 
Dorsolateral prefrontal R  208 4.49 0.592 0.083  54 28 6 
Angular R 50 4.41 0.667   38 -62 26 
Precuneus R 50 4.36 0.712   12 -44 40 
Dorsal anterior cingulate 105 4.32 0.744 0.03  8 2 40 
Cuneus L 91 4.28 0.774   -10 -68 26 
Superior temporal R 32 4.16 0.859   46 -42 22 
Thalamus L 32 4.08 0.905   -6 -30 -2 
Occipital L 35 4.03 0.929   -24 -86 38 
Occipital L 26 3.93 0.966   -16 -48 0 
Superior temporal R 19 3.90 0.971   44 -14 -10 
Precentral R 117 3.83 0.984   40 -18 58 
Superior temporal L 44 3.72 0.995   -54 -20 12 
Thalamus R 20 3.72 0.995   8 -30 -2 
Precuneus R 60 3.71 0.996   16 -60 26 
Supplementary motor area R 21 3.69 0.997   4 -8 58 
Middle temporal L 12 3.69 0.997   -62 -52 0 

The table contains all clusters with more than 10 voxels that survived uncorrected statistical 

thresholding with p < 0.001.  

 

S3.1 Fig. Definition of anatomical ROIs for small volume correction. dACC (green), dlPFC (yellow). 
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S3.2 Fig. Comparing models on the participant level. To calculate the predictive accuracy for each 

participant (LOOIC_i), pointwise log predictive densities (see methods) have to be summed up for all 

trials within each participant (white dots). Note that this differs from Fig 2B, in which the individual 

pointwise log predictive densities are summed up over all trials and participants. The hybrid strategy 

model (HM) was best for 33  (of N = 40) participants (black lines). For 3 participants the simple 

strategy model (SM, violet lines) and for 4 participants the planning model (PM, red lines) explained 

behaviour best. Bars indicate average LOOIC_i.  

 

S3.3 Fig. Encountered conflict levels plotted for intermediate (2, 3) and extreme (1, 4) offers. 

Histograms contain data of all forty participants. Dashed lines indicate the mean. 
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S3.1 Text. Task instructions. Participants were guided step by step through the task on the computer 

screen. Written instructions were accompanied by an arrow pointing towards the stimulus element 

currently addressed. The written instructions were: 

 Dear participant, the experiment is about collecting as many points as possible. Depending 

on your score at the end of the experiment, you will be paid a monetary bonus. 

 The current score is indicated by the upper yellow bar. 

 You can get points by accepting offers. 

 The current offer is presented in the middle of the screen. The magnitude of offers varies 

between 1 and 4, represented by the number of golden trophies. The offers are drawn at 

random, having the same occurrence probability of 25%.  

 However, accepting an offer is associated with energy costs. Your current energy level is 

represented by the lower blue bar. If you accept an offer and do not have enough energy, no 

points will be credited to you and the next trial will begin. 

 You can replenish your energy account by selecting the "reject" option. This will increase 

your energy level by 1 and the next trial will begin. 

 The energy level can have a maximum value of 6. 

 The experiment is divided into segments, each consisting of 4 trials. Two numbers are 

displayed on the screen to indicate how far you are in the current segment. 

 There are 2 different segment types, in which the energy costs for accepting an offer differ. 

In segments with 1 flash, 1 energy unit is subtracted when you accept an offer. In segments 

with 2 flashes, 2 energy units are subtracted when you accept an offer. The left blue-orange 

box at the bottom right of the screen informs you about the type of the current segment. 

 In addition to the type of the current segment, information about the energy costs in the 

next segment is available. This can be seen in the right blue-orange box at the bottom right 

of the screen. 

 Breaks: During the main experiment in the scanner, you have the possibility to pause twice. 

The pause screen is automatically displayed. You decide when you are ready to continue the 

experiment. Note: After a pause your score will be reset to 0. This has no effect on your final 

bonus. Your score is counted continuously. 

 Deadline: You have a maximum of 5 seconds for each decision. If you exceed this time limit, 

the next trial will begin without points being awarded. 

 Training: Before the main experiment in the scanner starts, you will be given a few training 

trials on the PC to familiarize yourself with the experiment. There is no deadline in the 

training and the points gained here have no effect on the bonus paid out. Please try to get as 

many points as possible anyway. The training phase will end automatically. 
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4 General discussion 

4.1 Summary of key results  

Planning ahead allows us to mentally simulate the effects of future actions in order to then choose 

the most favourable course of action. However, planning takes time and is thus associated with an 

opportunity cost. Normatively, one should only invest into planning if the expected benefits of 

planning exceeds its costs. The exact computation of those costs and benefits is infeasible, because 

this would incur its own computational costs (see e.g. section 1.5). Therefore, the brain can only 

approximate an optimal cost-benefit trade-off when regulating the use of planning. However, the 

cognitive and neural mechanism by which this is achieved are still largely unknown.  

This dissertation tested the hypothesis that humans construct and use so-called control contexts to 

efficiently adjust the degree of planning to the demands of the current situation. The control context 

hypothesis postulates that when learning the value of planning, our brains cluster together states 

with similar demands for planning. This generalisation reduces the complexity of the 

representational space while achieving sufficiently accurate predictive coding of the value to plan 

ahead for a large number of future situations.  

In the first study, we used a 15-step sequential decision making task to test how forward planning is 

dynamically mixed with simple heuristics when progressing towards a goal. When the goal was 

temporally distant the number of actions needed to achieve the goal was large and planning was 

particularly costly. However, as the goal was getting closer, planning complexity decreased and the 

effort to invest in it might have become worthwhile. In this scenario, we assumed that the 

participants identify “distance from goal” as the relevant control context for the regulation of 

planning. We specifically predicted that participants rely on simple heuristics when far from the goal 

but progressively increase their planning effort towards the end of the goal-reaching episode. To test 

our hypothesis, we formulated the task as a Markov Decision Process and operationalized forward 

planning as finding the optimal policy via dynamic programming. To assess the participants’ reliance 

on either forward planning or heuristics we used optimal-agent comparisons and a model-based 

analysis using a parametrized version of the planning model. The results confirmed our hypothesis 

showing that participants made suboptimal choices frequently when still far from the goal (around 

40% in the first 11 trials) but rapidly approximated optimal behaviour within the last four trials. The 

model-based analysis corroborated that the initial suboptimality was indeed caused by participants 

relying on a simple heuristic (captured by the strategy preference parameter 𝜃) and that this 

heuristic was progressively outweighed by forward planning (captured by the precision parameter 𝛽)  

when the goal was approached.  
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In the second study we investigated how inferred control contexts facilitate the situation-appropriate 

investment into forward planning via a contextually modulated processing of trial-by-trial conflicts in 

the dACC. To address this question we used a complex sequential decision making task, in which 

participants had to sustainably invest a limited but replenishable energy resource, that was needed 

to accept offers, in order to accumulate a maximum number of points in the long run. Importantly, 

the benefits of planning varied across the different situations that could be encountered in the task. 

Proactively adjusting the control system based on prior expectations about the demand for planning 

can be beneficial (see section 1.3.3), but representing such an expectation for each individual 

situation (448 in our task) would severely tax the memory system. We therefore assumed that 

participants use a more coarse-grained representation (i.e. control contexts) to precondition their 

final planning investment in a particular situation. We specifically assumed that inferring to be in a 

context, where it is generally beneficial to plan ahead, will upregulate the processing of trial-by-trial 

conflicts in the dACC. On the other hand, inferring to be in a context, where the demand for planning 

is generally low, will have an inhibitory effect on the processing of trial-by-trial conflicts in the dACC. 

That means in a trial in which the two options have similar values (i.e. in which conflict is high) less 

effort will be invested in refining those value estimates by planning ahead if participants infer to be 

in a context with low control demand relative to a context with high control demand.  

Analysis of choice behaviour, reaction times and brain activity, provided evidence consistent with our 

predictions. We first tested whether participants adapt their planning to the demands of the 

situation or whether they consistently use either simple heuristics or a pure planning strategy, 

regardless of the situation. In accordance with an adaptive planning strategy, a model-based analysis 

of choice behaviour showed that a hybrid model that includes both forward planning and simple 

offer-specific preferences explained participants’ behaviour best. We next tested our control context 

hypothesis on the behavioural level by analysing the relation of reaction times with conflict and how 

this relationship differs between control contexts. Here, it is assumed that reaction times reflect the 

time invested in planning and that conflicts (i.e. the difference between the action values derived 

from the model) represent preference uncertainty and thus a signal for planning demand. As 

predicted, we found that reaction times increased with the level of conflict, but that this increase 

was stronger in a context with a high demand for planning. This suggests that the amount of 

cognitive resources and time invested for the prospective evaluation of choice options does not only 

depend on the current preference-uncertainty but also on the demand for planning in the more 

global context. We finally tested, whether the context-dependent relationship between conflicts and 

forward planning is driven by context-dependent conflict processing in the dACC. Our analysis of 

fMRI data indeed revealed that activity in the dACC was positively correlated with trial-by-trial 

conflicts, but that this correlation was stronger in a context with a high demand for planning. Taken 
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together, the results suggest that the dACC integrates representations of planning demand on 

different levels of abstraction to regulate prospective information sampling, i.e. forward planning,  in 

an efficient and situation-appropriate way. 

4.2 Abstraction and cognitive control  

The results of this dissertation, and in particular of study 2, suggest that the abstraction of 

representational space plays an important role in the allocation of cognitive control. Although the 

role of state abstraction has received relatively little attention in research on control allocation 

(however for related research see Bhandari et al., 2017), it has been extensively explored in other 

domains such as language, perception and action control (Behrens et al., 2018; Friston, 2010; Friston 

& Kiebel, 2009; Lake et al., 2017; Tenenbaum et al., 2011). Integrating findings from these domains 

will be necessary to improve our understanding of the intertwined relationship between cognitive 

control and structured representations and show how control-related properties might shape 

structural learning. 

A basic form of abstraction is already evident in visual object recognition. In every encounter with an 

object, the primary visual stimulus is never exactly the same, due to differences in viewing angle, 

illumination, occlusion, viewing distance and other factors. Fortunately however, humans are able to 

robustly infer the identity of objects despite of these variances. This ability relies on the hierarchically 

organized layers of the ventral visual stream where each cortical area abstracts away the details 

below its input area (DiCarlo et al., 2012). Figuratively speaking, the ability to recognize objects might 

be based on abstract object representations that allow to generalise novel sensory instances of that 

object. High-level object representations not only facilitate invariant object perception, but more 

importantly, they form the basis for learning appropriate behaviour. For example if one encounters a 

tiger that looks slightly different from the tigers seen before, on could infer, based on generalized 

previous experience, that it would be better to avoid this novel instance of a tiger. 

Scene perception adds another layer of abstraction to the visual processing stream. Objects are 

usually not perceived in isolation, but as elements of a richer context, including other related objects 

and stimuli. According to Bar (2004), humans learn to predict the objects and their locations typically 

occurring in a scene based on so-called context frames. Context frames can be viewed as prototypical 

representations of unique contexts and provide a set of expectations that guide perception, action 

and eye movements for information gathering. A common empirical finding that supports the 

context frame idea is that when one is in a familiar context, such as a kitchen, it is easier to recognise 

objects that are typical of that context, (e.g. a fork) than object that are not (e.g. a bicycle)(Palmer, 

1975). In addition to perceptual facilitation, context frames engage a set of context-appropriate 
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responses and stimulus-response rules. For example, in a kitchen the prior tendency to make a coffee 

is higher than to do a backflip. In cognitive control research, the context-dependent binding of 

stimuli, actions and outcomes is typically referred to as tasks set. A large body of research provides 

behavioural (Monsell, 2003) and neural evidence (Dosenbach et al., 2006) for the existence of tasks 

sets, and that task sets generalise to novel situations (Collins & Frank, 2013). However, the 

relationship of tasks sets with the perceptual processes of context inference mentioned above 

remains poorly understood. 

Extending the concept of context frames to include a set of metacognitive expectations might be a 

fruitful approach to explain the results of Study 2. Specifically, inferring a particular context would 

trigger expectations not only about what one is likely to perceive and how one will respond, but also 

how much effort one will invest to make these responses. Thus, in some contexts, deliberative and 

cautious decision making may be appropriate (e.g. when writing a difficult section of a paper), while 

in another context, a less focused and ‘casual’ way of decision making may be appropriate (e.g. in a 

bar with friends). Algorithmically, context frames could adjust the height of a decision threshold a 

priori to the expected demand for information gathering in a given context. This resonates with the 

results in Fig 3.3 C, showing that the increase of response time with trial-level conflict was modulated 

by context. Another interesting question is whether metacognitive expectations (such as the demand 

for planning) can only become bound to pre-existing abstract context representations, or whether 

novel abstract control-specific contexts can be formed based on control-relevant properties. Results 

of Study 2 provide evidence for the latter, suggesting that participants partitioned the state space 

based on the demand to plan ahead. Participants grouped together the extreme offers 1 and 4 for 

which a simple strategy was often sufficient and the intermediate offers 2 and 3 for which planning 

was beneficial. However, further research is needed to unveil the exact nature of control context 

representations, how they can be learned and how they shape information processing within a larger 

network of cortical and subcortical brain structures. 

So far I discussed that context frames (or specifically control contexts) might be crucial to adjust 

speed-accuracy trade-offs of decision making to the demands of the current context. However, it is 

an open question how these context frames are activated in the first place. Interestingly, research on 

visual perception suggests that context frames can be triggered rapidly by coarse global scene 

information (Bar, 2004). On the neural level, low spatial frequencies of an image might be projected 

from early visual areas to association areas in the medial temporal and prefrontal cortex, which then 

endow the inferior temporal cortex with sensory expectations that help to disambiguate incoming 

high frequency information. This process of context frame activation resonates to some degree with 

a proposal from the cognitive control literature that task sets can be readily activated by particular 
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stimulus features (Abrahamse et al., 2016). To my knowledge, however, it has not yet been 

empirically tested whether task sets can be activated by fast low-frequency sensory pathways. In 

addition, a question more directly related to the work of this dissertation is, whether such fast 

pathways can also activate control contexts. These questions could be answered by future studies 

testing how cognitive performance changes when varying the spatial frequency spectrum or 

presentation time of stimuli for which scene-control associations have been learned. 

Abstractions do not only occur in the domain of states, e.g. as manifested in the perception of 

scenes, but also in the domain of actions. For example, the abstract action of making a coffee 

involves a series of intermediate actions, such as picking up the coffee container, pouring in the 

coffee powder and turning on the coffee maker, with intermediate actions themselves consisting of 

more primitive motor actions. On the computational level, (temporal) action abstractions have been 

formalized in hierarchical reinforcement learning (HRL; M. M. Botvinick et al., 2009; Sutton & Barto, 

2018). HRL involves the construction of a set of high-level actions that chunk together sequences of 

more primitive actions. Learning or planning within this abstract action space, thus allows an agent to 

efficiently select and execute high-level actions with large excepted rewards. An important question 

here is how action abstractions are discovered in the first place. While the most basic form of action 

chunking might depend on innate neurophysiological priors, such as with the central pattern 

generators for walking control (Marder & Bucher, 2001), there is also evidence that state 

abstractions can emerge from structural learning. It has been shown that humans discover 

hierarchical representations that allow for efficient planning and appropriate behaviour across a set 

of possible future tasks (Solway et al., 2014; Tomov et al., 2020). 

Konidaris (2019) notes that understanding the creation of useful representations requires to 

integrate both state abstraction and action abstraction. The state or perceptual abstractions we 

make might depend on the set of available action abstractions and the other way round, action 

abstraction might depend on the set of available state abstractions. An interesting observation in this 

regard is that when perceptual entities become associated with actions, their degrees of abstraction 

seem to be matched. For example inferring that one stands in front of a coffee machine might 

engage response tendencies to press the power button, while inferring to be in a kitchen context 

might engage the more abstract action, coding for the entire sequence of making a coffee. The work 

in this dissertation suggests that the utility of a representation for the regulations of forward 

planning, or more generally, for meta-control, may be yet another key to understanding the creation 

of abstract representations. 
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4.3 Limitations and future directions 

In the current work, forward planning was modelled as solving a finite-horizon MDP using dynamic 

programming (see equations 3.4-3.6), a method typically employed in model-based reinforcement-

learning. Using dynamic programming the optimal policy and state-action values were computed, 

which could be equivalently obtained by exhaustive forward planning. To account for participants’ 

limited processing capacities, responses were modelled by feeding optimal state-action values into a 

sigmoid function, including parameters for decision noise and response bias or preference (see 

sections 2.4.5 and 3.3.4 for further parameters and details). In our analysis, the preference 

parameters were used to characterise the participants' use of a heuristic or simple decision strategy 

over a planning strategy. However, a limitation of this interpretation is that the extent to which a 

heuristic generation process is attributed to a response depends on the specific implementation of 

the planning process. Thus, in some situations for which we inferred a heuristic strategy, participants 

might actually have planned ahead, but in a different way than our planning model. Previous studies 

suggest that humans can adapt their planning in various ways, for example by evaluating only a 

subset of actions sequences (Huys et al., 2012) or by limiting the depth of planning (Juechems et al., 

2019; Keramati et al., 2016). Dissociating those different algorithmic implementations of the planning 

process based on choice outcomes alone is inherently challenging and probably requires a different 

experimental design than used in this work. Future work should draw upon richer data (and 

modelling, see below), including reaction times and neural signals to further pin down the planning 

processes in the human brain. 

In study 2 we used reaction times as an indicator for the duration of participants’ planning and 

analysed its relationship with value-conflict using a linear regression model. A limitation of this 

approach is that it does not directly link the process of planning with the generation of response 

times. A fruitful approach for future studies could be to model planning as the refinement of a priori 

value estimates by the selective sampling of forward sequences that continues until a sufficient 

amount of evidence is available for one of the considered choice options. On the behavioural level 

such a model would allow for predictions of reaction times and response outcomes. On the neural 

level it might allow for novel predictions of how multiple brain networks for planning, valuation and 

control interact during decision making. For example, it could be tested how sampled forward 

sequences from the model relate to sequential activity in the hippocampus (Bakkour et al., 2019; Doll 

et al., 2015; Johnson & Redish, 2007; Redish, 2016), how information obtained by this sampling 

influences value signals in the vmPFC (Levy & Glimcher, 2012), and how the dACC regulates the 

planning process (B. Schmidt et al., 2019) by monitoring dynamic value signals and their 

uncertainties. Recent cognitive models begin to integrate multiple aspects of the decision process, 
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for example by replacing the choice function of reinforcement learning models with a sequential 

sampling model (Fontanesi et al., 2019; Pedersen & Frank, 2020) or by modelling information 

sampling as a function of evolving uncertain value estimates (Callaway et al., 2021; D. G. Lee & 

Daunizeau, 2021). So far these models have only been applied to simple economic choice. Extending 

these models to sequential decision making tasks that require forward planning would be an 

interesting avenue for future research.  

The results of this dissertation provided evidence that the regulation of planning (i.e. meta-control) 

relies at least partially on an abstract representation of the state space (control contexts), however, 

our implementation of planning itself operates on a fine-grained representation of the state space 

(assuming complete knowledge of the MDP).  While it is possible that the brain hosts separate 

representations of different granularity for different tasks, there is also evidence that people plan 

based on abstract states and actions (e.g. Tomov et al., 2020; see also section 4.2). Such hierarchical 

planning could implicitly reduce computational costs of planning, in addition to the top-down 

regulatory processes studied in the current work. It is uncertain how our results were influenced by 

this, but future studies should directly test the cost-cutting effect of different abstraction levels on 

planning.   

Complex sequential tasks like the ones developed in this thesis or in previous studies (e.g. 

Economides et al., 2014; Juechems et al., 2019; Kolling et al., 2014; Korn & Bach, 2018; 

Schwartenbeck et al., 2015), might provide novel insights into how humans leverage their structured 

world-knowledge for planning and decision making. Still, challenges remain, as the additional 

complexity of the tasks permits a multitude of possible hypotheses (see discussion above). 

Distinguishing between these hypotheses requires most likely rich behavioural and neural 

measurements, as well as careful computational modelling that bridges the gaps between behaviour, 

cognitive processes and brain activity. Ultimately, the approach of using rich naturalistic sequential 

tasks combined with cognitive computational modelling, may help us to better understand why 

humans in the real world often do not sufficiently consider the future consequences of their actions. 

Emblematic examples of this human limitation are the overexploitation of limited natural resources 

or the anthropogenic climate change. Insufficient forward planning, i.e. the mental simulation of 

action consequences, may indeed be an important contributory cause of these societal problems. 
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